Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/393
Browse
Browsing Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed by Scopus Q "Q3"
Now showing 1 - 20 of 300
- Results Per Page
- Sort Options
Article 3D Sampling of K-Space With Non-Cartesian Trajectories in MR Imaging(Gazi Univ, Fac Engineering Architecture, 2025) Dundar, Mehmet Sait; Gumus, Kazim Z.; Yilmaz, Bulent; 01. Abdullah Gül UniversityThis study presents an innovative approach to 3D k-space sampling in MR imaging using non-Cartesian concentric shell trajectories. The method involves 32 concentric shells of varying radii, allowing for rapid data acquisition through undersampling techniques. Simulations using IDEA software demonstrate that this approach can fill the k-space in less than one second, a significant time reduction compared to traditional FLASH sequences that can take 3-4 minutes. The concentric shell model enhances imaging efficiency by minimizing artifacts and ensuring uniform k-space filling, leading to higher resolution and faster scans. This technique shows promise for clinical applications, particularly in dynamic imaging scenarios such as acute stroke and pediatric radiology, where speed and precision are critical. As illustrated in Figure A, the concentric shell trajectories enable uniform k-space filling, significantly reducing scan times and improving image quality. These results are based on the simulations conducted with IDEA software.Article Citation - WoS: 12Citation - Scopus: 144D-QSAR Investigation and Pharmacophore Identification of Pyrrolo[2,1-C][1,4]Benzodiazepines Using Electron Conformational-Genetic Algorithm Method(Taylor & Francis Ltd, 2016) Ozalp, A.; Yavuz, S. C.; Sabanci, N.; Copur, F.; Kokbudak, Z.; Saripinar, E.; 01. Abdullah Gül UniversityIn this paper, we present the results of pharmacophore identification and bioactivity prediction for pyrrolo[2,1-c][1,4]benzodiazepine derivatives using the electron conformational-genetic algorithm (EC-GA) method as 4D-QSAR analysis. Using the data obtained from quantum chemical calculations at PM3/HF level, the electron conformational matrices of congruity (ECMC) were constructed by EMRE software. The ECMC of the lowest energy conformer of the compound with the highest activity was chosen as the template and compared with the ECMCs of the lowest energy conformer of the other compounds within given tolerances to reveal the electron conformational submatrix of activity (ECSA, i.e. pharmacophore) by ECSP software. A descriptor pool was generated taking into account the obtained pharmacophore. To predict the theoretical activity and select the best subset of variables affecting bioactivities, the nonlinear least square regression method and genetic algorithm were performed. For four types of activity including the GI(50), TGI, LC50 and IC50 of the pyrrolo[2,1-c][1,4] benzodiazepine series, the r(train)(2), r(test)(2) and q(2) values were 0.858, 0.810, 0.771; 0.853, 0.848, 0.787; 0.703, 0.787, 0.600; and 0.776, 0.722, 0.687, respectively.Article Citation - Scopus: 9Adjustment Speed of Debt Maturity: Evidence From Financial Crises in East Asia(Bank Indonesia Institute, 2021) Tekin, Hasan; Polat, Ali Yavuz; 01. Abdullah Gül UniversityWe investigate the change in adjustment speed of debt maturity for East Asian firms between 1990 and 2017 by including two exogenous shocks: the Asian Financial Crisis 1997-1998 (AFC) and the Global Financial Crisis 2007-2009 (GFC). We employ the least square dummy variable correction and find that East Asian firms have a slower adjustment of long-term debt over time. Besides, the decrease in adjustment speed of long-term debt after the GFC is more compared to the decrease after the AFC. Further analysis shows the optimal debt maturity differs across countries and industries. Another important implication of our results is that firms in high governance countries are more likely to close the gap between the actual and target debt maturity in time. Overall, debt holders and investors should consider financial uncertainties. © 2025 Elsevier B.V., All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4All-Polymer Ultrasonic Transducer Design for an Intravascular Ultrasonography Application(Tubitak Scientific & Technological Research Council Turkey, 2019) Hah, Dooyoung; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiIntravascular ultrasonography (IVUS), a medical imaging modality, is used to obtain cross-sectional views of blood vessels from inside. In IVUS, transducers are brought to the proximity of the imaging targets so that high-resolution images can be obtained at high frequency without much concern of signal attenuation. To eliminate mechanical rotation rendered in conventional IVUS, it is proposed to manufacture a transducer array on a flexible substrate and wrap it around a cylindrical frame. The transducer of consideration is a capacitive micromachined ultrasonic transducer (CMUT). The whole device needs to be made out of polymers to be able to endure a high degree of bending (radius: 1 mm) Bending of the devices leads to considerable changes in the device characteristics, including resonant frequency and pull-in voltage due to geometrical dimension changes and stress induced. The main purpose of this work is to understand the effect of bending on the device characteristics by means of finite element analysis. Another objective of the work is to understand the relationships between such an effect and the device geometries. It is learned that the bending-induced stress depends strongly on anchor width, membrane thickness, and substrate thickness. It is also learned that resonant frequency and pull-in voltage become lower in most cases because of using a flexible substrate in comparison to those of the device on a rigid substrate. Bending-induced stress increases the spring constant and hence increases resonant frequency and pull-in voltage, although this effect is relatively weaker. For most of the device geometries, pull-in voltage is too high for the polymer material to endure. This is the main drawback of the all-polymer CMUT. In order to meet the design goal of 20 MHz resonant frequency, the membrane radius has to be smaller than 7.7 mu m for a thickness of 3 mu m.Article Citation - WoS: 7Citation - Scopus: 7Amorphous Boron Nitride at High Pressure(Taylor & Francis Ltd, 2016) Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiThe pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp(3) and sp(2) bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp(3) bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P4(2)/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 degrees C) conditions.Article Citation - WoS: 5Citation - Scopus: 5Amorphous Silicon Hexaboride at High Pressure(Taylor & Francis Ltd, 2020) Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiWe investigate the pressure-induced structural phase transformation of amorphous silicon hexaboride (a-SiB6) using a constant pressure first principles approach. a-SiB6 is found to undergo a gradual phase transformation to a high-density amorphous phase (HDA) in which the average coordination number of both B and Si atoms is about 6. The HDA phase consists of differently coordinated motifs ranging from 4 to 8. B-12 icosahedra are found to persist during compression of a-SiB6 and the structural modifications primarily occur around Si atoms and in the regions linking pentagonal pyramid-like configurations to each other. Upon pressure release, an amorphous structure, similar to the uncompressed one, is recovered, indicating a reversible amorphous-to-amorphous phase change in a-SiB6. When the electronic structure is considered, the HDA phase is perceived to have a wider forbidden band gap than the uncompressed one.Article Citation - WoS: 3Citation - Scopus: 3Amorphous Silicon Hexaboride: A First-Principles Study(Taylor & Francis Ltd, 2018) Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiWe report for the first time the atomic structure, electronic structure and mechanical properties of amorphous silicon hexaboride (a-SiB6) based on first-principles molecular dynamics simulation. The a-SiB6 model is generated from the melt and predominantly consists of pentagonal pyramid-like configurations and B-12 icosahedral molecules, similar to what has been observed in most boron-rich materials. The mean coordination number of B and Si atoms are 5.47 and 4.55, respectively. The model shows a semiconducting behaviour with a theoretical bandgap energy of 0.3eV. The conduction tail states are found to be highly localised and hence the n-type doping is suggested to be more difficult than the p-type doping for a-SiB6. The bulk modulus and Vickers hardness of a-SiB6 are estimated to be about 118 and 13-17GPa, respectively.Article Citation - WoS: 8Citation - Scopus: 9Amorphous Zirconia: Ab Initio Molecular Dynamics Simulations(Taylor & Francis Ltd, 2017) Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiWe investigate the short-range order of the liquid and amorphous zirconia using an ab initio molecular dynamics technique. Both forms of zirconia are projected to be structurally close to each other. The amorphous network has predominantly seven-fold coordinated Zr atoms (similar to% 65), and three-fold and four-fold coordinated O atoms (similar to 46%), and hence it resembles locally the monoclinic zirconia phase. Within the known limitations of the DFT-GGA calculation, the liquid state is predicted to be semi-metal, whereas the amorphous form is projected to be semiconductor having a band gap energy of similar to 3.5 eV. We find an asymmetry in localisation of the band tail states. On the basis of this finding, we discuss possible distinctions in n-type and p-type doping in amorphous zirconia.Article Citation - WoS: 8Citation - Scopus: 12AMP-GSM: Prediction of Antimicrobial Peptides via a Grouping-Scoring Approach(MDPI, 2023) Soylemez, Ummu Gulsum; Yousef, Malik; Bakir-Gungor, Burcu; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiDue to the increasing resistance of bacteria to antibiotics, scientists began seeking new solutions against this problem. One of the most promising solutions in this field are antimicrobial peptides (AMP). To identify antimicrobial peptides, and to aid the design and production of novel antimicrobial peptides, there is a growing interest in the development of computational prediction approaches, in parallel with the studies performing wet-lab experiments. The computational approaches aim to understand what controls antimicrobial activity from the perspective of machine learning, and to uncover the biological properties that define antimicrobial activity. Throughout this study, we aim to develop a novel prediction approach that can identify peptides with high antimicrobial activity against selected target bacteria. Along this line, we propose a novel method called AMP-GSM (antimicrobial peptide-grouping-scoring-modeling). AMP-GSM includes three main components: grouping, scoring, and modeling. The grouping component creates sub-datasets via placing the physicochemical, linguistic, sequence, and structure-based features into different groups. The scoring component gives a score for each group according to their ability to distinguish whether it is an antimicrobial peptide or not. As the final part of our method, the model built using the top-ranked groups is evaluated (modeling component). The method was tested for three AMP prediction datasets, and the prediction performance of AMP-GSM was comparatively evaluated with several feature selection methods and several classifiers. When we used 10 features (which are members of the physicochemical group), we obtained the highest area under curve (AUC) value for both the Gram-negative (99%) and Gram-positive (98%) datasets. AMP-GSM investigates the most significant feature groups that improve AMP prediction. A number of physico-chemical features from the AMP-GSM's final selection demonstrate how important these variables are in terms of defining peptide characteristics and how they should be taken into account when creating models to predict peptide activity.Article An Extension of Lucas's Theorem(indian Nat Sci Acad, 2025) Cinkir, Zubeyir; Ozturkalan, Aysegul; 01. Abdullah Gül University; 02.02. Endüstri Mühendisliği; 02. Mühendislik FakültesiWe give elementary proofs of some congruence criteria to compute binomial coefficients modulo a prime number. These criteria are analogues to the symmetry property of binomial coefficients. We give extended version of Lucas's Theorem by using those criteria. We give applications of these criteria by describing a method to derive identities and congruences involving sums of binomial coefficients.Article Citation - WoS: 1Citation - Scopus: 2Analysis of Geometric Features in Anatolian Seljuk Kümbets(Kim Williams Books, 2025) Guzelci, Orkan Zeynel; Turel, Ahmet; 01. Abdullah Gül UniversityThe funerary structures known as k & uuml;mbets, developed during the Anatolian Seljuk period (1077-1307), represent a distinctive architectural typology. This study first demonstrates that each Anatolian Seljuk k & uuml;mbet is unique in its sectional geometry. It then employs statistical methods to analyze these structures, with the aim to understand their architectural styles and formation principles through measurable geometric features. The scope includes the analysis of 56 section drawings of 67 freestanding k & uuml;mbets. The methodology involves data collection and preparation, feature selection, and dataset refinement using a box plot technique, followed by correlation analysis. Among the 28 correlations analyzed, 18 are statistically significant. One of the strongest correlations indicates a strong inverse relationship between the cap's inner angle and cap height (r = - 0.93), while the weakest is a positive relationship between cap height and interior wall height (r = 0.27).Article Citation - Scopus: 1Analysis of Mosaic Mortars From the Roman, Byzantine and Early Islamic Periods Sourced From Gerasa's Northwest Quarter(Springer, 2024) Ball, Richard J.; Ansell, Martin P.; Su-Cadirci, Tugce Busra; Baki, Vahiddin Alperen; Fletcher, Philip J.; Lichtenberger, Achim; Wootton, Will; 01. Abdullah Gül UniversityThis study analyses and compares around 650 years of mosaic mortar production spanning the Roman, late Roman and Umayyad periods, at Gerasa/Jerash in Jordan, offering a better understanding of composition, structural features, and manufacturing processes. It assesses the value of optical and electron microscopy examination of morphological and textural features, pore structure using MIP, and composition studies using EDX, XRD, FTIR, TGA, and Raman spectroscopy. The study indicated high density lime adhesive was used compared to other mortars. Wood was used as a fuel when producing the lime and natural fibres were incorporated when manufacturing mortars. Aggregates were primarily calcitic with a small proportion of silica-based aggregates. Key outcomes of the study conclude that early Roman mortars were of highest quality, which was demonstrated through the careful selection of materials including different stone for lime and tesserae, and differences between layers. Late Roman mortars used the same slaked lime plus fibres and charcoal. Mortars dating from the Umayyad period also had the same higher lime content than late Roman, but higher porosity with fibres and charcoal. In general, the mortars showed slight differences in content and aggregate; different stone for lime and tesserae. The research attests to underlying traditions as well as changes in mortar mixes and methods according to context and time. The resulting data is contextualized within local and regional approaches.Article Citation - WoS: 2Citation - Scopus: 2Analysis of Optical Gyroscopes With Vertically Stacked Ring Resonators(Tubitak Scientific & Technological Research Council Turkey, 2021) Hah, Dooyoung; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiWithout any moving part, optical gyroscopes exhibit superior reliability and accuracy in comparison to mechanical sensors. Microring-resonator-based optical gyroscopes emerged as alternatives for bulky conventional Sagnac interferometer sensors, especially attractive for applications with limited footprints. Previously, it has been reported that planar incorporation of multiple resonators does not bring about improvement in sensitivity for a given area because the increase in Sagnac phase accumulation does not outrun the increase of area. Therefore, it was naturally suggested to consider vertical stacking of ring resonators because then, the resonators can share the same footprint. In this work, sensitivity performances of such configurations with vertically stacked microring resonators are analyzed and compared to that of a basic (single-resonator) configuration. Through comprehensive study, it is learned that the sensitivity performance of the devices with vertically-stacked resonators (either with a single bus waveguide or with two bus waveguides) does not exceed that of the basic sensor device (single resonator with one bus waveguide), i.e. the basic structure is yet to be remained as the most efficient configuration.Article Citation - WoS: 2Citation - Scopus: 2Analysis of Oscillator Phase Noise Effect on High Order QAM Links(Springer, 2020) Bicici, Cagri; Ozdur, Ibrahim; Cerezci, Osman; 01. Abdullah Gül UniversityIn this work, the effect of oscillator phase noise on the bit error rate (BER) for high order QAM communication systems is analyzed. Two high frequency oscillators are designed, built and tested to get real phase noise data, and a BER simulation of a 1024 QAM signal through a super-heterodyne frequency down-converter is implemented using the measured data from the two oscillators as local oscillator sources for the down-converter. A third frequency source is also added to the simulation to visualize the dramatic effect of phase noise on the system BER analysis.Article Citation - WoS: 6Citation - Scopus: 8Anhedonia in Relation to Reward and Effort Learning in Young People With Depression Symptoms(MDPI, 2023) Frey, Anna-Lena; Kaya, M. Siyabend; Adeniyi, Irina; McCabe, Ciara; 01. Abdullah Gül University; 06. İnsan ve Toplum Bilimleri Fakültesi; 06.02. PsikolojiAnhedonia, a central depression symptom, is associated with impairments in reward processing. However, it is not well understood which sub-components of reward processing (anticipation, motivation, consummation, and learning) are impaired in association with anhedonia in depression. In particular, it is unclear how learning about different rewards and the effort needed to obtain them might be associated with anhedonia and depression symptoms. Therefore, we examined learning in young people (N = 132, mean age 20, range 17-25 yrs.) with a range of depression and anhedonia symptoms using a probabilistic instrumental learning task. The task required participants to learn which options to choose to maximize their reward outcomes across three conditions (chocolate taste, puppy images, or money) and to minimize the physical effort required to obtain the rewards. Additionally, we collected questionnaire measures of anticipatory and consummatory anhedonia, as well as subjective reports of "liking", "wanting" and "willingness to exert effort" for the rewards used in the task. We found that as anticipatory anhedonia increased, subjective liking and wanting of rewards decreased. Moreover, higher anticipatory anhedonia was significantly associated with lower reward learning accuracy, and participants demonstrated significantly higher reward learning than effort learning accuracy. To our knowledge, this is the first study observing an association of anhedonia with reward liking, wanting, and learning when reward and effort learning are measured simultaneously. Our findings suggest an impaired ability to learn from rewarding outcomes could contribute to anhedonia in young people. Future longitudinal research is needed to confirm this and reveal the specific aspects of reward learning that predict anhedonia. These aspects could then be targeted by novel anhedonia interventions.Article Citation - WoS: 9Citation - Scopus: 10An Answer to Colon Cancer Treatment by Mesenchymal Stem Cell Originated from Adipose Tissue(Mashhad Univ Med Sciences, 2018) Iplik, Elif Sinem; Ertugrul, Baris; Kozanoglu, Ilknur; Baran, Yusuf; Cakmakoglu, Bedia; 01. Abdullah Gül UniversityObjective(s): Colon cancer is risen up with its complex mechanism that directly impacts on its treatment as well as its common prevalence. Mesenchymal stem cells (MSCs) have been considered as a therapeutic candidate for conventional disease including cancer. In this research, we have focused on apoptotic effects of adipose tissue-derived MSCs in colon cancer. Materials and Methods: MSCs were obtained from adipose tissue and characterized by Flowcytometer using suitable antibodies. MSCs, HT-29, HCT-116, RKO and healthy cell line MRC5 were cultured by different seeding procedure. After cell viability assay, changes in caspase 3 enzyme activity and the level of phosphatidylserine were measured. Results: For cell viability assay, a 48 hr incubation period was chosen to seed all cells together. There was a 1.36-fold decrease in caspase 3 enzyme activity by co-treatment of RKO and MSCs in addition to 2.02-fold decrease in HT-29 and MSCs co-treatment, and 1.103-fold increase in HCT-116 and MSCs. The results demonstrated that HCT-116 led to the highest rate of apoptotic cell death (7.5%) compared with other cells. Conclusion: We suggest that MSCs might remain a new treatment option for cancer by its differentiation and repair capacity.Article Citation - WoS: 10Citation - Scopus: 11Antibacterial Bilayered Skin Patches Made of HPMA and Quaternary Poly(4-Vinyl Pyridine)(Korean Fiber Soc, 2018) Isoglu, I. Alper; Demirkan, Cemre; Seker, Mine Gul; Tuzlakoglu, Kadriye; Isoglu, Sevil Dincer; 01. Abdullah Gül University; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikThis study aimed to produce poly(4-vinyl pyridine) and hydroxypropyl methacrylamide (HPMA)-based bilayer wound dressings materials enhancing healing mechanism for the wounds which have self-healing problem and high infection risk. These materials were designed to protect wound from secondary traumas caused microorganism invasion and do not have toxic substance release problem. Synthesis of quaternary poly(4-vinyl pyridine) (poly(Q4-VP)) which is the antibacterial layer of wound dressing material was carried out in two stages. At first stage, poly(4-vinyl pyridine) polymer was synthesized from 4-vinyl pyridine monomer by free radical polymerization. Then, poly(Q4-VP) was synthesized from poly(4-VP) by alkylation reaction with 6-bromocaproic acid. Resulted polymer was structurally characterized by FT-IR. The macroporous spongy structure, as the lower layer of wound dressing material, was prepared by cryogelation of HPMA. Then, the antibacterial polymer was electrospun onto the cryogel structure and bilayered material was obtained. Cryogel structure, fiber morphology and layer integration was examined by SEM. In order to enhance wound healing process, ascorbic acid (vitamin C) was loaded to cryogel layer and release was followed by spectrophotometrically. The antimicrobial properties of the materials were examined against Escherichia coli, Staphylococcus aureus and Candida albicans, respectively. According to the results, bilayered, antibacterial and antifungal against Staphylococcus aureus and Candida albicans, temporary wound dressings which can stimulate wound healing and have high swelling capacity were obtained successfully.Article Citation - WoS: 20Citation - Scopus: 23Apoptotic Effects of Non-Edible Parts of Punica Granatum on Human Multiple Myeloma Cells(Sage Publications Ltd, 2016) Kiraz, Yagmur; Neergheen-Bhujun, Vidushi S.; Rummun, Nawraj; Baran, Yusuf; 01. Abdullah Gül UniversityMultiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts.Article Citation - WoS: 3Citation - Scopus: 3Application of Smoothed Particle Hydrodynamics to Structural Cable Analysis(MDPI, 2020) Dincer, A. Ersin; Demir, Abdullah; 01. Abdullah Gül University; 02.03. İnşaat Mühendisliği; 02. Mühendislik FakültesiIn this study, a numerical model is proposed for the analysis of a simply supported structural cable. Smoothed particle hydrodynamics (SPH)-a mesh-free, Lagrangian method with advantages for analysis of highly deformable bodies-is utilized to model a cable. In the proposed numerical model, it is assumed that a cable has only longitudinal stiffness in tension. Accordingly, SPH equations derived for solid mechanics are adapted for a structural cable, for the first time. Besides, a proper damping parameter is introduced to capture the behavior of the cable more realistically. In order to validate the proposed numerical model, different experimental and numerical studies available in the literature are used. In addition, novel experiments are carried out. In the experiments, different harmonic motions are applied to a uniformly loaded cable. Results show that the SPH method is an appropriate method to simulate the structural cable.Article Citation - Scopus: 3Application of Team-Based Learning at a Health Science Course: A Case Study(Athens Institute for Education and Research, 2019) Bengu, Elif; 0000-0001-9817-7207; AGÜ, Eğitim Bilimleri Fakültesi, Temel Eğitim Bölümü; Bengü, Elif; 01. Abdullah Gül University; 10. RektörlükThe purpose of this study is to identify students’ reactions to the implementation of team-based learning as an instructional strategy in a pharmacology course in the context of a Turkish university. Team-based learning is defined as an active form of learning that not only encourages individual effort but also team involvement to learn in an academic setting. Team-based learning is one of the learning techniques/methods that is increasingly being used in medical education. Literature shows that in teambased learning students apply the concepts at the time they are learned in the classroom, before the exams, as opposed to traditional lecturing, in which the concepts that are learned are later tested in the exams. Furthermore, research supports that faculty are more engaged with their students in team-based learning, since it affords instructors the ability to readily identify what their students are achieving, as opposed to traditional lecturing or other group approaches. There are limited studies in Turkey that examine the applications of team-based learning in a higher education setting. Therefore, this study describes the use of the team-based learning technique in an undergraduate health science course in Turkey. The initial results indicate that this instructional strategy was beneficial for students’ learning. © 2023 Elsevier B.V., All rights reserved.
