Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/393
Browse
Browsing Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed by Publisher "Amer Concrete inst"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 20Citation - Scopus: 37Fresh, Mechanical, Transport, and Durability Properties of Self-Consolidating Rubberized Concrete(Amer Concrete inst, 2012) Karahan, Okan; Ozbay, Erdogan; Hossain, Khandaker M. A.; Lachemi, Mohamed; Atis, Cengiz D.This paper presents the fresh, mechanical, transport, and durability performances of self-consolidating rubberized concretes (SCRCs). Fresh concrete properties were determined with slump flow, V-funnel, J-ring, and L-box tests. Mechanical, transport, and durability properties were determined by measuring compressive, flexural, and splitting tensile strengths; bond strength characteristics; water porosity; water absorption; water sorptivity; rapid chloride-ion permeability; and freezing-and-thawing and corrosion resistance. SCRC mixtures with a water-binder ratio (w/b) of 0.32; total binder content of 500 kg/m(3) (842 lb/yd(3)); and crumb rubber content of 0, 10, 20, and 30% by fine aggregate volume were produced and tested. Fresh properties testing revealed that the use of crumb rubber as a fine aggregate diminished the filling and passing ability of SCRC. A gradual reduction in mechanical properties was also observed with an increase in crumb rubber content; however, the rate of compressive strength reduction was more evident than that of tensile strength. Despite the fact that water porosity, water absorption, and chloride-ion permeability increased slightly with the use of crumb rubber, a remarkable decrease was observed in the initial and secondary water sorptivity of SCRC. No significant decrease was observed in the freezing-and-thawing and corrosion resistance of SCRC with 10% crumb rubber. Beyond that level, however, durability performance was significantly affected.Article Citation - WoS: 51Citation - Scopus: 61Investigation of Properties of Engineered Cementitious Composites Incorporating High Volumes of Fly Ash and Metakaolin(Amer Concrete inst, 2012) Ozbay, E.; Karahan, O.; Lachemi, M.; Hossain, K. M. A.; Atis, C. DuranThis study was carried out to develop engineered cementitious composites (ECCs) incorporating binary blends of high volumes of fly ash (FA) and metakaolin (MK) for the purpose of achieving low drying shrinkage and high composite strength with adequate ductility and improved durability. ECC, an ultra-ductile cement-based composite reinforced with short random fibers, exhibits strain-hardening and multiple-cracking behavior in uniaxial tension and bending. Standard (M45) and high-volume FA ECC mixtures are typically produced by replacing portland cement (PC) with 55% and 70% of FA, respectively (FA-to-cement ratio of 1.2 and 2.2 by weight). In this study, the (FA + MK)/PC ratio was maintained at 1.2 and 2.2 and the FA/MK ratio was maintained at 4.5. Two replacement levels of MK with FA were adopted. The investigation used 10% and 12.5% MK by weight of total binder content, respectively. For the purposes of comparison, standard and high-volume FA ECCs were also studied. To determine the effect of binary blends of FA and MK on the properties of ECC, this study focused on the evaluation of free drying shrinkage, flexural and compressive strengths, porosity and water absorption (WA), sorptivity, and chloride-ion permeability. The experimental results showed that the drying shrinkage, porosity, absorption, sorptivity, and chloride-ion permeability properties were significantly reduced with the use of binary blends of FA and MK, while ECC's ultra-high ductility and strain-hardening properties were preserved at an adequate level.
