Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/393
Browse
Browsing Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed by Publisher "Amer Chemical Soc"
Now showing 1 - 20 of 63
- Results Per Page
- Sort Options
Conference Object Measuring Temperature Change on Photothermal Au Nanorod and Nanocage Upon Laser Irradiation(Amer Chemical Soc, 2015) Cavusoglu, Halit; Sakalak, Huseyin; Buyukbekar, Burak Zafer; Demirel, Gokhan; Citir, Murat; Yavuz, Mustafa SelmanArticle Citation - WoS: 53Citation - Scopus: 59Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media(Amer Chemical Soc, 2020) Erdem, Onur; Foroutan, Sina; Gheshlaghi, Negar; Guzelturk, Burak; Altintas, Yemliha; Demir, Hilmi VolkanWe propose and demonstrate construction of highly uniform, multilayered superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using liquid interface self-assembly. These NPLs are sequentially deposited onto a solid substrate into slabs having monolayer-precise thickness across tens of cm(2) areas. Because of near-unity surface coverage and excellent uniformity, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin film having 6 NPL layers, corresponding to a mere 42 nm thickness. Furthermore, systematic studies on optical gain of these NPL superstructures having thicknesses ranging from 6 to 15 layers revealed the gradual reduction in gain threshold with increasing number of layers, along with a continuous spectral shift of the ASE peak (similar to 18 nm). These observations can be explained by the change in the optical mode confinement factor with the NPL waveguide thickness and propagation wavelength. This bottom-up construction technique for thickness-tunable, three-dimensional NPL superstructures can be used for large-area device fabrication.Article Citation - WoS: 75Citation - Scopus: 74Perfluoroalkyl-Functionalized Thiazole Thiophene Oligomers as N-Channel Semiconductors in Organic Field-Effect and Light-Emitting Transistors(Amer Chemical Soc, 2014) Usta, Hakan; Sheets, William Christopher; Denti, Mitchell; Generali, Gianluca; Capelli, Raffaella; Lu, Shaofeng; Facchetti, AntonioDespite their favorable electronic and structural properties, the synthetic development and incorporation of thiazole-based building blocks into n-type semiconductors has lagged behind that of other pi-deficient building blocks. Since thiazole insertion into pi-conjugated systems is synthetically more demanding, continuous research efforts are essential to underscore their properties in electron-transporting devices. Here, we report the design, synthesis, and characterization of a new series of thiazolethiophene tetra- (1 and 2) and hexa-heteroaryl (3 and 4) co-oligomers, varied by core extension and regiochemistry, which are end-functionalized with electron-withdrawing perfluorohexyl substituents. These new semiconductors are found to exhibit excellent n-channel OFET transport with electron mobilities (mu(e)) as high as 1.30 cm(2)/(V center dot s) (I-on/I-off > 10(6)) for films of 2 deposited at room temperature. In contrary to previous studies, we show here that 2,2'-bithiazole can be a very practical building block for high-performance n-channel semiconductors. Additionally, upon 2,2'- and 5,5'-bithiazole insertion into a sexithiophene backbone of well-known DFH-6T, significant charge transport improvements (from 0.0010.021 cm(2)/(V center dot s) to 0.200.70 cm(2)/(V center dot s)) were observed for 3 and 4. Analysis of the thin-film morphological and microstructural characteristics, in combination with the physicochemical properties, explains the observed high mobilities for the present semiconductors. Finally, we demonstrate for the first time implementation of a thiazole semiconductor (2) into a trilayer light-emitting transistor (OLET) enabling green light emission. Our results show that thiazole is a promising building block for efficient electron transport in ?-conjugated semiconductor thin-films, and it should be studied more in future optoelectronic applications.Article Citation - WoS: 37Citation - Scopus: 39Spectrally Wide-Range Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures(Amer Chemical Soc, 2020) Altintas, Yemliha; Liu, Baiquan; Hernandez-Martinez, Pedro Ludwig; Gheshlaghi, Negar; Shabani, Farzan; Sharma, Manoj; Demir, Hilmi VolkanRecently, there has been tremendous interest in the synthesis and optoelectronic applications of quasi-two-dimensional colloidal nanoplatelets (NPLs). Thanks to the ultranarrow emission linewidth, high-extinction coefficient, and high photostability, NPLs offer an exciting opportunity for high-performance optoelectronics. However, until now, the applications of these NPLs are limited to available discrete emission ranges, limiting the full potential of these exotic materials as efficient light emitters. Here, we introduce a detailed systematic study on the synthesis of NPLs based on the alloying mechanisms in core/shell, core/alloyed shell, alloyed core/shell, and alloyed core/alloyed shell heterostructures. Through the engineering of the band gap supported by the theoretical calculations, we carefully designed and successfully synthesized the NPL emitters with continuously tunable emission. Unlike conventional NPLs showing discrete emission, here, we present highly efficient core/shell NPLs with fine spectral tunability from green to deep-red spectra. As an important demonstration of these efficient emitters, the first-time implementation of yellow NPL light-emitting diodes (LEDs) has been reported with record device performance, including the current efficiency surpassing 18.2 cd A(-1), power efficiency reaching 14.8 lm W-1, and record luminance exceeding 46 900 cd m(-2). This fine and wide-range color tunability in the visible range from stable and efficient core/shell NPLs is expected to be extremely important for the optoelectronic applications of the family of colloidal NPL emitters.Article Citation - WoS: 16Citation - Scopus: 17Colloidal Aluminum Antimonide Quantum Dots(Amer Chemical Soc, 2019) Jalali, Houman Bahmani; Sadeghi, Sadra; Sahin, Mehmet; Ozturk, Hande; Ow-Yang, Cleva W.; Nizamoglu, SedatAlSb is a less studied member of the III-V semiconductor family, and herein, we report the colloidal synthesis of AlSb quantum dots (QDs) for the first time. Different sizes of colloidal AlSb QDs (5 to 9 nm) were produced by the controlled reaction of AlCl3 and Sb[N(Si(Me)(3))(2)](3) in the presence of superhydride. These colloidal AlSb quantum dots showed excitonic transitions in the UV-A region and a tunable band edge emission (quantum yield of up to 18%) in the blue spectral range. Among all III-V quantum dots, these quantum dots show the brightest core emission in the blue spectral region.Article Citation - WoS: 12Citation - Scopus: 10Understanding the Effect of Symmetry Breaking on Plasmon Coupling From TDDFT(Amer Chemical Soc, 2021) Alkan, Fahri; Aikens, Christine M.We perform a time-dependent density functional theory (TDDFT) investigation for the optical properties of nanorod assemblies for different sizes (Ag-10, Ag-59, and Ag-139), interparticle distances, and orientations with a focus on the effect of symmetry breaking via an angle on plasmon coupling. For the model systems, the angle (theta) between the particles is varied between 0 and 180 degrees, where theta = 0 degrees and theta = 180 degrees correspond to symmetric side-by-side and end-to-end orientations of the nanorods, respectively. Our analysis reveals that for a sufficiently large interparticle distance (r > 0.7 nm), where the wave-function overlap between monomers is negligible, TDDFT results agree quite well with the predictions of the dipole-dipole interaction model for the intensity of the different modes of coupled plasmons. For smaller gap distances (0.4-0.5 nm), a charge-transfer plasmon (CTP) mode occurs for the symmetry broken case of the Ag-10 dimer. For the assemblies of larger nanorods, however, the CTP mode is predicted to be less pronounced, especially for the cases where the deviation from the end-to-end geometry is larger than 30 degrees. The orbital overlap and configuration-interaction analyses show that these results are related to the fact that the relative overlap strength between monomeric energy levels is significantly reduced for symmetry-broken orientations of larger nanorods.Article Fully Inorganic Colloidal CsPbBr3 Perovskite Nanocrystals with Zn-Doping and Metal Oxide Encapsulation for Luminescent Display Panels(Amer Chemical Soc, 2025) Khorasani, Azam; Soheyli, Ehsan; Mutlugun, EvrenPerovskite nanocrystals (PeNCs) are emerging as exceptional materials due to their high photoluminescence quantum yield, tunable bandgap, and excellent charge carrier mobility, enabling a wide range of colors and promising applications in optoelectronics and photovoltaics. Despite their advantages, PeNCs face stability challenges caused by environmental factors. In the presented study, a facile and versatile colloidal hot-injection method was used to apply the beneficial aspects of Zn-doping in cesium lead bromide (CsPbBr3) PeNCs. The uniform platelet-shaped Zn-doped CsPbBr3 PeNCs were prepared by doping with a 0.1 molar ratio of zinc-oleate solution in the perovskite precursors during synthesis. Then, zinc-oxide (ZnO) and nickel-oxide (NiO) coating layers were utilized separately to effectively reduce surface defects, encapsulate PeNCs, and improve their stability issues. To fabricate the coated PeNCs with metal oxides, zinc acetate and nickel(II) acetate tetrahydrate solutions were prepared individually and added to the crude perovskite solutions. The quantum yield of Zn-doped CsPbBr3 (CsPb1-xZnxBr3) PeNCs coated with ZnO increased from 50% for bare CsPbBr3 to over 84%, while NiO-coated PeNCs exhibited a higher yield of 90% both of which remarkably enhanced the emission stability. Moreover, NiO coatings represented a proper protection against surface imperfections and improved resistance to external stimuli. The combination of facile/effective preparation method, excellent emission efficiency, and reliable emission stability nominates the prepared colloidal composite for display pixels, detectors, and lasers.Article Citation - WoS: 12Citation - Scopus: 12Sulfobetaine-Based Homo- and Copolymers by Raft: Cross-Linked Micelles and Aqueous Solution Properties(Amer Chemical Soc, 2022) Gurdap, Seda; Bayram, Nazende Nur; Isoglu, Ismail Alper; Isoglu, Sevil DincerIn this study, we describe the synthesis and aqueous solution behavior of temperature-sensitive N-(3-sulfopropyl)-N-methacroyloxyethyl-N,N-dimethylammonium betaine (SBMA) homopolymers and core cross-linked micelles (CCMs) with an SBMA shell. Reversible addition- fragmentation chain transfer polymerization has been utilized to synthesize sulfobetaine homopolymers, followed by CCM formation during copoly-merization in the presence of an acid-degradable cross-linker. First, SBMA homopolymers of varying chain lengths were synthesized, and it has been demonstrated that an increase in the chain length and concentration of the homopolymer resulted in an increase in the upper critical solution temperature (UCST). Besides, micelles showed concentration-dependent dual temperature-sensitive behavior with UCST and LCST transitions. Also, homopolymers and CCMs were characterized by FTIR, H-1-NMR, GPC, and TEM. Micelle formation and temperature sensitivity were also investigated by DLS. As a result, stabilized micelles were successfully prepared with the motivation of preventing premature drug release and achieving a pH-and temperature-controlled system. Due to their dual-responsive characteristics, the CCMs show promising potential to be used as smart drug carriers for controlled delivery.Article Citation - WoS: 49Citation - Scopus: 51Dicarboxylic Acids Induced Tandem Transformation of Silver Nanocluster(Amer Chemical Soc, 2023) Wang, Zhi; Gupta, Rakesh Kumar; Alkan, Fahri; Han, Bao-Liang; Feng, Lei; Huang, Xian-Qiang; Sun, DiStructural transformation of metal nanoclusters (NCs) is of great ongoing interest regarding their synthesis, stability, and reactivity. Although sporadic examples of cluster transformations have been reported, neither the underlying transformation mechanism nor the intermediates are unambiguous. Herein, we have synthesized a flexible 54-nuclei silver cluster (Ag54) by combining soft ((BuC)-Bu-t=C-) and hard ((PrCOO-)-Pr-n) ligands. The existence of weakly coordinated nPrCOO(-) enhances the reactivity of Ag54, thus facilitating the dicarboxylic acid to induce structural transformation. X-ray structural analyses reveal that Ag54 transforms to Ag-28 cluster-based 2D networks (Ag28a and Ag28b) induced by H(2)suc (succinic acid) and H(2)glu (glutaric acid), whereas with H(2)pda (2,2'-(1,2-phenylene)diacetic acid), a discrete Ag-28 cluster (Ag28c) is isolated. The key intermediate Ag17 that emerges during the self-dissociation of Ag54 was isolated by using cryogenic recrystallization and characterized by X-ray crystallography. The "tandem transformation" mechanism for the structure evolution from Ag54 to Ag28a is established by time-dependent electrospray ionization mass spectrometry (ESIMS) and UV-vis spectroscopy. In addition, the catalytic activity in the 4-nitrophenol reduction follows the sequence Ag28c > Ag28b > Ag28a > Ag54 due to more bare silver sites on the surface of the Ag-28 cluster unit. Our findings not only open new avenues to the synthesis of silver NCs but also shed light on a better understanding of the structural transformation mechanism from one cluster to another or cluster-based metal-organic networks induced by dicarboxylates.Article Citation - WoS: 53Citation - Scopus: 54Cadmium-Free and Efficient Type-II InP/ZnO Quantum Dots and Their Application for Leds(Amer Chemical Soc, 2021) Eren, Guncem Ozgun; Sadeghi, Sadra; Jalali, Houman Bahmani; Ritter, Maximilian; Han, Mertcan; Baylam, Isinsu; Nizamoglu, SedatIt is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based typeII QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of similar to 91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle Xray scattering shows that spherical InP core and InP/ZnO core/ shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.Article Citation - WoS: 6Citation - Scopus: 8Histone Deacetylase Inhibition and Autophagy Modulation Induces a Synergistic Antiproliferative Effect and Cell Death in Cholangiocarcinoma Cells(Amer Chemical Soc, 2023) Yenigul, Munevver; Akcok, Emel Basak GencerCholangiocarcinoma, also known as biliary tract cancer,is an aggressiveadenocarcinoma arising from epithelial cells lining the intra- andextrahepatic biliary system. The effects of autophagy modulators andhistone deacetylase (HDAC) inhibitors in cholangiocarcinoma are notfully known. It is essential to understand the molecular mechanismsand the effects of HDAC inhibitors in the context of cholangiocarcinoma.The antiproliferative effect of different HDAC inhibitors and autophagymodulation was investigated by the MTT cell viability assay in TFK-1and EGI-1 cholangiocarcinoma cell lines. Combination indexes werecalculated using CompuSyn software. Consequently, apoptosis was detectedby Annexin V/PI staining. The effect of the drugs on the cell cyclewas measured by the propidium iodide staining. The HDAC inhibitionwas confirmed via acetylated histone protein levels by western blotting.HDAC inhibitors, MS-275 and romidepsin, showed a better synergisticeffect with the nocodazole combination. The combination treatmentexerted its growth inhibitory effect by cell cycle arrest and inductionof apoptosis. The cell cycle analysis of the combination treatmentshowed that the S phase and G2/M phase were achieved. Moreover, thenecrotic and apoptotic cell population increased after single HDACinhibitors and combination treatment. The anti-cancer effect of HDACinhibitors is revealed by acetylation levels of histones. While acetylationlevels were increased in response to HDAC inhibitors and autophagymodulator combinations, the HDAC expression decreased. This studyhighlights the importance of the combination of HDAC inhibition andautophagy modulators and demonstrates a synergistic effect, whichcould be a promising therapy and novel treatment approach for cholangiocarcinoma.Conference Object Organic Semiconductor Based Surface-Enhanced Raman Spectroscopy Platforms(Amer Chemical Soc, 2018) Demirel, Gokhan; Usta, Hakan; Facchetti, AntonioConference Object Nanothermometer: Measuring Temperature Change in Nanometer Scale on Photothermal Au Nanoparticles(Amer Chemical Soc, 2015) Sakalak, Huseyin; Cavusoglu, Halit; Buyukbekar, Burak Zafer; Demirel, Gokhan; Citir, Murat; Yavuz, Mustafa SelmanArticle Citation - WoS: 11Citation - Scopus: 14Nanowire-Shaped MoS2@MoO3 Nanocomposites as a Hole Injection Layer for Quantum Dot Light-Emitting Diodes(Amer Chemical Soc, 2022) Bastami, Nasim; Soheyli, Ehsan; Arslan, Aysenur; Sahraei, Reza; Yazici, Ahmet Faruk; Mutlugun, EvrenMolybdenum disulfides and molybdenum trioxides are structures that possess the potential to work as efficient charge transport layers in optoelectronic devices. In the present study, as opposed to the existing Mo-based nanostructures in flake, sheet, or spherical forms, an extremely simple and low-cost hydrothermal method is used to prepare nanowires (NWs) of MoS2@MoO3 (MSO) composites. The synthesis method includes several advantages including easy handling and processing of inexpensive precursors to reach stable MSO NWs without the need for an oxygen-free medium, which would facilitate the possibility of mass production of these nanostructures. The structural analysis confirmed the formation of MSO nanocomposites with different Mo valence states, as well as NWs of average length and diameter of 70 nm and 5 nm, respectively. In order to demonstrate their potential for optoelectronic applications, MSO NWs were blended into hole injection layers (HILs) in quantum dot-based light emitting diodes (QLEDs). Electroluminescence measurements show a substantial enhancement in both luminance (from 44,330 to 68,630 cd.m-2) and external quantum efficiency (from 1.6 to 2.3%), based on the increase in the ratio of MSO NWs from 3 to 10%. Interestingly, the addition of 10% volume of MSO NWs resulted in a remarkably smoother HIL with improved current efficiency and stability in green-emitting QLEDs. The simplicity and cost-effective features of the synthesis method along with outstanding favorable morphology demonstrated their ability to enhance the QLED performance and mark them as promising agents for optoelectronics.Article Citation - WoS: 36Citation - Scopus: 38Effect of Molecular Architecture on Cell Interactions and Stealth Properties of PEG(Amer Chemical Soc, 2017) Ozer, Imran; Tomak, Aysel; Zareie, Hadi M.; Baran, Yusuf; Bulmus, VolgaPEGylation, covalent attachment of PEG to therapeutic biomolecules, in which suboptimal pharmacokinetic profiles limiting their therapeutic utility are of concern, is a widely applied technology. However, this technology has been challenged by reduced bioactivity of biomolecules upon PEGylation and immunogenicity of PEG triggering immune response and abrogating clinical efficacy, which collectively necessitate development of stealth polymer alternatives. Here we demonstrate that comb-shape poly[oligo(ethylene glycol) methyl ether methacrylate](POEGMA); a stealth polymer alternative, has a more compact structure than PEG and self-organize into nanoparticles in a molecular weight dependent manner. Most notably, we show that comb shape POEGMA promotes significantly higher cellular uptake and exhibits less steric hindrance imposed on the conjugated biomolecule than PEG. Collectively, comb-shape POEGMA offers a versatile alternative to PEG for stealth polymer-biomolecule conjugation applications.Article Citation - WoS: 13Citation - Scopus: 13Boosting the Ceramics With in Situ MOF- Derived Nanocarbons(Amer Chemical Soc, 2023) Duden, Enes Ibrahim; Bayrak, Kubra Gurcan; Balkan, Mert; Cakan, Niyaz; Demiroglu, Arsen; Ayas, Erhan; Sen, UnalMetal-organic framework (MOF)-derived nano-carbons have emerged as promising materials for energy and environmental applications owing to their high surface area, structural and chemical tunability, and hierarchical porosity. Although various carbon-based materials such as graphene and carbon nanotubes have been extensively used as secondary sintering additives to develop advanced ceramics with improved mechanical, thermal, and electrical properties, the potential of MOF-derived nanocarbon-based materials has not been ex-plored. Here, we report the first use of MOF-derived nanocarbons as a reinforcement phase in ceramic composites. To this end, Al2O3 and zeolitic imidazolate framework (ZIF-8) are used as the ceramic matrix and nanocarbon source, respectively. The ceramic composites are produced by densifying Al2O3 and ZIF-8 powder mixtures using spark plasma sintering (SPS) at 1550 degrees C and uniaxial pressure of 50 MPa. The fracture toughness of the composite increases up to 67% in comparison to an alumina monolith as ZIF-derived nanocarbons form interlayers to assist the dissipation of energy during the crack propagation and inhibit grain growth. The room-temperature electrical conductivity of the sintered samples drastically increases with the in situ formed nanocarbon-based fillers, reaching as high as 1410 S/m for 10 wt % ZIF-8 content. These results constitute an excellent initial step toward boosting the mechanical and electrical properties of ceramic matrix composites with in situ MOF-derived nanocarbons.Article Citation - WoS: 22Citation - Scopus: 25Revisiting the Role of Charge Transfer in the Emission Properties of Carborane-Fluorophore Systems: A TDDFT Investigation(Amer Chemical Soc, 2022) Tahaoglu, Duygu; Usta, Hakan; Alkan, FahriIn this study, we performed a detailed investigation of the S-1 potential energy surface (PES) of o-carborane-anthracene (o-CB-Ant) with respect to the C-C bond length on o-CB and the dihedral angle between o-CB and Ant moieties. The effects of different substituents (F, Cl, CN, and OH) on carbon- or boron-substituted o-CB, along with a pi-extended acene-based fluorophore, pentacene, on the nature and energetics of S-1 -> S-0 transitions are evaluated. Our results show the presence of a non-emissive S-1 state with an almost pure charge transfer (CT) character for all systems as a result of significant C-C bond elongation (C-C = 2.50-2.56 angstrom) on o-CB. In the case of unsubstituted o-CB-Ant, the adiabatic energy of this CT state corresponds to the global minimum on the S-1 PES, which suggests that the CT state could be involved in emission quenching. Despite large deformations on the o-CB geometry, predicted energy barriers are quite reasonable (0.3-0.4 eV), and the C-C bond elongation can even occur without a noticeable energy penalty for certain conformations. With substitution, it is shown that the dark CT state becomes even more energetically favorable when the substituent shows -M effects (e.g., -CN), whereas substituents showing +M effects (e.g., -OH) can result in an energy increase for the CT state, especially for partially stretched C-C bond lengths. It is also shown that the relative energy of the CT state on the PES depends strongly on the LUMO level of the fluorophore as this state is found to be energetically less favorable compared to other conformations when anthracene is replaced with pi-extended pentacene. To our knowledge, this study shows a unique example of a detailed theoretical analysis on the PES of the S-1 state in o-CB-fluorophore systems with respect to substituents or fluorophore energy levels. Our findings could guide future experimental work in emissive o-CB-fluorophore systems and their sensing/optoelectronic applications.Conference Object Polymeric Semiconductors Based on Meso-Substituted BODIPY for (Opto)electronic Applications(Amer Chemical Soc, 2019) Usta, Hakan; Kim, Choongik; Kim, BumjoonArticle Citation - WoS: 99Citation - Scopus: 103Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells(Amer Chemical Soc, 2019) Altintas, Yemliha; Gungor, Kivanc; Gao, Yuan; Sak, Mustafa; Quliyeva, Ulviyya; Bappi, Golam; Demir, Hilmi VolkanAs an attractive materials system for high- Record-low optical gain threshold in giant-shell COWs performance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the 0.2 performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 mu J cm(-2) under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 /kJ cm(-2) for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mu J cm(-2) threshold under two-photoexcitation, which is also the best among nanocrystals (compared to 0.76 mu J cm(-2) from CdSe/CdS CQDs in the Fabry-Perot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.Article Citation - WoS: 4Citation - Scopus: 4Transparent Films Made of Highly Scattering Particles(Amer Chemical Soc, 2020) Erdem, Talha; Yang, Lan; Xu, Peicheng; Altintas, Yemliha; O'Neil, Thomas; Caciagli, Alessio; Eiser, ErikaToday, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration. Here, we address this strong scattering issue in films made of binary colloidal suspensions. In particular, we focus on raspberry-type polymeric particles made of a spherical polystyrene core decorated by small hemispherical domains of acrylate with an overall positive charge, which display an unusual stability against aggregation in aqueous solutions. Their solid films display a brilliant red color due to Bragg scattering but appear completely white on account of strong scattering otherwise. To suppress the scattering and induce transparency, we prepared films by hybridizing them with oppositely charged PS particles with a size similar to that of the bumps on the raspberries. We report that the smaller PS particles prevent raspberry particle aggregation in solid films and suppress scattering by decreasing the spatial variation of the refractive index inside the film. We believe that the results presented here provide a simple strategy to suppress strong scattering of larger particles to be used in optical coatings.
