Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/203
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Publisher "IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Conference Object In-silico Identification of Papillary Thyroid Carcinoma Molecular Mechanisms(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2019) Ersoz, Nur Sebnem; Guzel, Yasin; Bakir-Gungor, BurcuRepresenting approximately 70% to 80% of thyroid cancers, papillary thyroid cancer (PTC) is the most common type of thyroid cancers. PTC is seen in all age groups, but it is seen more frequently in women than in men. Detection of biomarker proteins of papillary thyroid cancinoma plays an important role in the diagnosis of the disease. In this study, we aim to find target genes and pathways that are associated with papillar thyroid carcinoma, by integrating different bioinformatics methods. For this purpose, usingin-silico methodologies, candidate genes and pathways that could explain disease development mechanisms are identified. Throughout this study, firstly we identified differentially expressed genes as the amount of their protein product differ between patient and healthy groups. Secondly, by using active subnetworks search algorithms, topologic analyses and functional enrichment tests, candidate proteins,which could be thought as PTC biomarkers, and affected pathways are identified.Conference Object Ensemble Churn Prediction for Internet Service Provider with Machine Learning Techniques(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Goy, Gokhan; Kolukisa, Burak; Bahcevan, Cenk; Gungor, Vehbi CagriWith the developing technology in every fields, a competitive marketing environment has been arised In this competitive environment analyzing customer behavior has become vital In particular, the ability to easily change any service provider has become vet) , critical for the company to continue its existence At the same time, the amount of financial resources spent on retaining instituters much less than to obtain new clients. In this context, the traditional methods of examining vast amount of data obtained today for establishing decision support systems have lost their validities In this study. we used a dataset which is provided by TurkNet serving as an internet service provider in Turkey. Various preprocessing steps has performed on this dataset and then classification algorithms ran. Afterwards results have obtained and compared. The results of these experiments analyzed in terms of the area under the curve value In this context the aunt successful classifier algorithm has been determined as the Random Trees algorithm with a value of 0.936.Conference Object Identification of Shared Pathways Among Immune Related Diseases Utilizing Active Subnetworks(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Eryilmaz, Mahmut Kaan; Kuzudisli, Cihan; Gungor, Burcu BakirDifferent, but related diseases often contain shared symptoms indicating the presence of possible overlaps in underlying pathogenic mechanisms. The identification of the shared pathways and related factors across these diseases helps to better understand the causes of these diseases, to prevent and treat these diseases. In this study, using immune-related diseases, we proposed a new method on how to compare the development mechanisms of related diseases based on biological pathways. Following the developments in genomic technologies, the genotyping gets cheaper and easier, and hence genome-wide association studies (GWAS) emerged. By this means, via studying big-sized case-control groups for a specific disease, potential genetic variations, single nucleotide polymorphisms (SNPs) could he identified. With the help of these studies, in which around a million of SNPs are scanned, the variations and genes that could have a role in specific disease development could be detected. In this study, via using available GWAS datasets and human protein-protein interaction network, and via detecting active subnetworks and affected pathways, seven immune related diseases are analyzed. Via investigating the similarities among the identified pathways for related diseases, we aim to define the underlying pathogenic mechanisms, and hence to contribute to the elucidation of disease development mechanisms and to the drug repositioning studies.Conference Object A New Method to Identify Affected Pathway Subnetworks and Clusters in Colon Cancer(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2019) Goy, Gokhan; Yazici, Miray Unlu; Bakir-Gungor, BurenNowadays new technological developments that play an important role in the production of big data have brought about the interpretation, sharing and storage of data related to complex diseases. Combining multi-omic data in different molecular levels is potentially important for understanding the biological origin of complex diseases. One of these complex diseases is cancer of different types, which has one of the highest causes of death worldwide. The integration of multiple omic data in the framework of a comprehensive analysis and identification of relevant pathways contribute to the development of therapeutic approaches related to disease. In this study, RNA and methylation data (genes and p values) of colon adenocarcinoma were obtained from TCGA data portal and combined with Fisher's method. While protein subnetworks affected by the disease were identified by using subnetwork algorithm, pathways related to the disease and genes associated with these pathways were determined by functional enrichment analysis. Using gene-pathway relationship matrix, kappa scores of pathways were determined by similarity calculation. In this way, the pathways were clustered according to the hierarchically optimal number, as a result, the most important pathway clusters and related genes that are effective in disease formation identified.
