Fen Bilimleri Enstitüsü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/192
Browse
Browsing Fen Bilimleri Enstitüsü by Department "Abdullah Gül University"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 15Citation - Scopus: 27Distributed Formation Control of Drones With Onboard Perception(IEEE-Inst Electrical Electronics Engineers Inc, 2022) Kabore, Kader Monhamady; Guler, Samet; 0000-0001-5388-9649; 0000-0002-9870-166X; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; Kabore, Kader Monhamady; Guler, Samet; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiWhile aerial vehicles offer enormous benefits in several application domains, multidrone localization and control in uncertain environments with limited onboard sensing capabilities remains an active research field. A formation control solution which does not rely on external infrastructure aids such as GPS and motion capture systems must be established based on onboard perception feedback. We address the integration of onboard perception and decision layers in a distributed formation control architecture for three-drone systems. The proposed algorithm fuses two sensor characteristics, distance, and vision, to estimate the relative positions between the drones. Particularly, we utilize the omnidirectional sensing property of the ultrawideband distance sensors and a deep learning-based bearing detection algorithm in a filter. The entire system leads to a closed-loop perception-decision framework, whose stability and convergence properties are analyzed exploiting its modular structure. Remarkably, the drones do not use a common reference frame. We verified the framework through extensive simulations in a realistic environment. Furthermore, we conducted real world experiments using two drones and proved the applicability of the proposed framework. We conjecture that our solution will prove useful in the realization of future drone swarms.Master Thesis Kanser Alt Tipi Tanımlama Problemi için Bir Etiket Yayma Yaklaşımı Geliştirme(Tubitak Scientific & Technological Research Council Turkey, 2022) Guner, Pinar; Bakir-Gungor, Burcu; Coskun, Mustafa; Güner, Pınar; Güngör, Burcu; Coşkun, Mustafa; 0000-0001-5979-0375; 0000-0002-2272-6270; 0000-0003-4805-1416; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Guner, Pinar; Bakir-Gungor, Burcu; Coskun, Mustafa; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiKanser terimi, anormal hücrelerin kontrolden çıkıp diğer dokuları istila ettiği hastalıkları tanımlamak için kullanılır. Çok sayıda kanser türü vardır ve birçok kanser türü, farklı klinik ve biyolojik etkileri olan çeşitli alt tiplere sahiptir. Bu farklılıklar, kanserin farklı alt tiplerinin tedavisi için farklı yöntemlerin izlenmesi gerektiğini göstermektedir. Kişiselleştirilmiş tıbbın geliştirilmesine yardımcı olabileceğinden, kanser alt tiplerini keşfetmek biyoinformatikte önemli bir problemdir. Kanserin alt tipinin bilinmesi, tedavi basamaklarının ve öngörünün belirlenmesinde faydalıdır. Hesaplamalı biyoinformatik yöntemler, farklı kanser alt tiplerinin ortak moleküler patolojisini ortaya çıkararak hedeflenen tedavileri tasarlamak için kanser analizi yapmaya yardımcı olur. Şimdiye kadar, kanser alt tiplerini keşfetmek veya kanseri bilgilendirici alt tiplere ayırmak için çeşitli hesaplamalı yöntemler önerildi. Ancak, mevcut çalışmalar verilerin seyrekliğini dikkate almamakta ve kötü koşullu (tersi alınamayan) çözümle sonuçlanmaktadır. Bu eksikliği gidermek için, bu tezde, uygulamalı sayısal cebir tekniklerini kullanarak kanseri alt tiplerine ayırmak için alternatif bir denetimsiz hesaplama yöntemi öneriyoruz. Daha detaylı olarak, bu etiket yayma tabanlı yaklaşımı kolon, baş ve boyun, rahim, mesane ve meme tümörlerinin somatik mutasyon profillerini sınıflandırmak için uyguladık. Sonra, yöntemimizin performansını temel yöntemlerle karşılaştırarak değerlendirdik. Kapsamlı deneyler, yaklaşımımızın, modern denetimsiz ve denetimli yaklaşımlardan büyük ölçüde daha iyi performans göstererek tümör sınıflandırma görevlerini yüksek oranda yerine getirdiğini kanıtlamaktadır.