Browsing by Author "Yilmaz, Bulent"
Now showing 1 - 20 of 62
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 5Emotion Detection Using Multivariate Synchrosqueezing Transform via 2D Circumplex Model(Institute of Electrical and Electronics Engineers Inc., 2018) Ozel, Pinar; Akan, Aydin; Yilmaz, Bulent; Özel, Pınar; Akan, Aydin I.; Yilmaz, BulentEmotion detection by utilizing signal processing methods is a challenging area. An open issue in emotional modeling is to obtain an optimum feature set to use for the classification process. This study proposes an approach for emotional state classification by the investigation of EEG signals via multivariate synchrosqueezing transform (MSST). MSST is a post-processing technique to compose a localized time-frequency representation yielding multivariate syncyrosqueezing coefficients. After obtaining these coefficients from EEG signals for 18 subjects from DEAP dataset, coefficients and self-assessment-mannequins (SAM) labels of those subjects are used for emotional state classification by using support vector machines (SVM) nearest neighbor, decision tree, and ensemble methods. The accuracy rate is 70.6% for high valence high arousal (HVHA), 75.4% for low valence high arousal (LVHA), 77.8% for high valence low arousal (HVLA), and 77.2% for low valence low arousal (LVLA) cases using SVM. © 2019 Elsevier B.V., All rights reserved.Conference Object Citation - Scopus: 1Detection of Epileptic Seizures With Tangent Space Mapping Features of EEG Signals(IEEE, 2021) Altindis, Fatih; Yilmaz, BulentDetection of epileptic seizures from EEG signals is well-studied topic for the last couple of decades. Lately, automated signal processing and machine learning methods were developed to detect epileptic seizures. However, most of the methods are tailored to subjects and require fine tuning of many parameters. In this study, we proposed to use Riemannian geometry-based signal processing method that already showed superior performance on brain-computer interface problems, to extract features. We showed that tangent space mapping features of EEG signals can be used to detect seizures with high accuracy and precision.Article Citation - WoS: 20Citation - Scopus: 25Medical Infrared Thermal Image Based Fatty Liver Classification Using Machine and Deep Learning(Taylor & Francis Ltd, 2024) Ozdil, Ahmet; Yilmaz, BulentNon-alcoholic fatty liver disease (NAFLD) causes accumulation of excess fat in the liver affecting people who drink little to no alcohol. Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease (inflammation in the liver), may progress to cirrhosis and liver failure. Liver function tests, ultrasound (US) and magnetic resonance imaging (MRI) are used to help diagnose and monitor liver disease or damage. In this study, the feasibility of medical infrared thermal imaging (MITI) in automatic detection of NAFLD was investigated, and 167 MITI images (44 positive) from 32 patients (7 positive) were evaluated using image processing and classification methods. Convolutional neural network (CNN) architectures and texture analysis methods were used in the feature selection phase. After feature selection and binary classification, the highest values from different setups for recall, f-score, specificity, accuracy, and area-under-curve (AUC) were 1.00, 1.00, 0.83, 1.0, 0.94, and 0.92, respectively. The highest values were achieved by CNN based methods on different datasets, however, texture analysis method performed lower. Here, it is shown that some of the CNN architectures have high potential on extracting features from thermal images. Finally, machine and deep learning approaches can be combined in detecting NAFLD using infrared thermal images.Conference Object Citation - Scopus: 13Staging of the Liver Fibrosis From CT Images Using Texture Features(2012) Kayaaltı, Ömer; Aksebzeci, Bekir Hakan; Karahan, Ökkeş Ibrahim; Deniz, Kemal; Öztürk, Menmet; Yilmaz, Bulent; Asyali, Musa HakanEven though liver biopsy is critical for evaluating chronic hepatitis and fibrosis, it is an invasive, costly, and difficult to standardize approach. The developments in medical image processing and artificial intelligence methods have advanced the potential of using computer-aided diagnosis techniques in the classification of liver tissues. The aim of this study was to develop a non-invasive, cost-effective, and fast approach to specify fibrosis stage using the texture properties of computed tomography images of liver. Gray level co-occurrence matrix, discrete wavelet transform, and discrete Fourier transform were the image analysis tools in the feature extraction phase. Following dimension reduction of the texture features support vector machines and k-nearest neighbor methods were used in the classification phase of this study. Our results showed that our approach is feasible in fibrosis staging especially in pairwise stage comparisons with success rate of approximately 90%. © 2012 IEEE. © 2012 Elsevier B.V., All rights reserved.Article Citation - WoS: 28Citation - Scopus: 31Liver Fibrosis Staging Using CT Image Texture Analysis and Soft Computing(Elsevier, 2014) Kayaalti, Omer; Aksebzeci, Bekir Hakan; Karahan, Ibrahim Okkes; Deniz, Kemal; Ozturk, Mehmet; Yilmaz, Bulent; Asyali, Musa HakanLiver biopsy is considered to be the gold standard for analyzing chronic hepatitis and fibrosis; however, it is an invasive and expensive approach, which is also difficult to standardize. Medical imaging techniques such as ultrasonography, computed tomography (CT), and magnetic resonance imaging are non-invasive and helpful methods to interpret liver texture, and may be good alternatives to needle biopsy. Recently, instead of visual inspection of these images, computer-aided image analysis based approaches have become more popular. In this study, a non-invasive, low-cost and relatively accurate method was developed to determine liver fibrosis stage by analyzing some texture features of liver CT images. In this approach, some suitable regions of interests were selected on CT images and a comprehensive set of texture features were obtained from these regions using different methods, such as Gray Level Co-occurrence matrix (GLCM), Laws' method, Discrete Wavelet Transform (DWT), and Gabor filters. Afterwards, sequential floating forward selection and exhaustive search methods were used in various combinations for the selection of most discriminating features. Finally, those selected texture features were classified using two methods, namely, Support Vector Machines (SVM) and k-nearest neighbors (k-NN). The mean classification accuracy in pairwise group comparisons was approximately 95% for both classification methods using only 5 features. Also, performance of our approach in classifying liver fibrosis stage of subjects in the test set into 7 possible stages was investigated. In this case, both SVM and k-NN methods have returned relatively low classification accuracies. Our pairwise group classification results showed that DWT, Gabor, GLCM, and Laws' texture features were more successful than the others; as such features extracted from these methods were used in the feature fusion process. Fusing features from these better performing families further improved the classification performance. The results show that our approach can be used as a decision support system in especially pairwise fibrosis stage comparisons. (C) 2014 Elsevier B.V. All rights reserved.Article Citation - WoS: 13Citation - Scopus: 14Relationship Between Objective and Subjective Cognitive Load Measurements in Multimedia Learning(Routledge Journals, Taylor & Francis Ltd, 2023) Mutlu-Bayraktar, Duygu; Ozel, Pinar; Altindis, Fatih; Yilmaz, BulentThe aim of this study is to compare subjective and objective cognitive load measurements in a multimedia learning environment. For this purpose, 20 university students studied in multimedia environments designed by researchers during which eye movements and multichannel electroencephalography (EEG) signals were recorded. Self-report ratings were obtained at the end of the experiment, and retention performances of the students were measured. After the data were collected, Pearson Correlation analysis was applied. According to the results, significant relationship between the number of fixations and EEG frequency band powers was found. In addition, there was a negative relationship between retention performance and number of fixations. Moreover, a negative relationship was found between retention performance and self-reported measurements.Article Citation - WoS: 1Motion Artifact Detection in Colonoscopy Images(Sciendo, 2018) Kacmaz, Rukiye Nur; Yilmaz, Bulent; Dundar, Mehmet Sait; Dogan, SerkanComputer-aided detection is an integral part of medical image evaluation process because examination of each image takes a long time and generally experts' do not have enough time for the elimination of images with motion artifact (blurred images). Computer-aided detection is required for both increasing accuracy rate and saving experts' time. Large intestine does not have straight structure thus camera of the colonoscopy should be moved continuously to examine inside of the large intestine and this movement causes motion artifact on colonoscopy images. In this study, images were selected from open-source colonoscopy videos and obtained at Kayseri Training and Research Hospital. Totally 100 images were analyzed half of which were clear. Firstly, a modified version of histogram equalization was applied in the pre-processing step to all images in our dataset, and then, used Laplacian, wavelet transform (WT), and discrete cosine transform-based (DCT) approaches to extract features for the discrimination of images with no artifact (clear) and images with motion artifact. The Laplacian-based feature extraction method was used for the first time in the literature on colonoscopy images. The comparison between Laplacian-based features and previously used methods such as WT and DCT has been performed. In the classification phase of our study, support vector machines (SVM), linear discriminant analysis (LDA), and k nearest neighbors (k-NN) were used as the classifiers. The results showed that Laplacian-based features were more successful in the detection of images with motion artifact when compared to popular methods used in the literature. As a result, a combination of features extracted using already existing approaches (WT and DCT) and the Laplacian-based methods reached 85% accuracy levels with SVM classification approach.Conference Object Citation - WoS: 7Citation - Scopus: 12Use of Topological Data Analysis in Motor Intention Based Brain-Computer Interfaces(European Signal Processing Conference, EUSIPCO, 2018) Altindis, Fatih; Yilmaz, Bulent; İçöz, Kutay; Borisenok, S.This study aims to investigate the use of topological data analysis in electroencephalography (EEG) based on brain-computer interface (BCI) applications. Our study focused on extracting topological features of EEG signals obtained from the motor cortex area of the brain. EEG signals from 8 subjects were used for forming data point clouds with a real-time simulation scenario and then each cloud was processed with JPlex toolbox in order to find out corresponding Betti numbers. These numbers represent the topological structure of the point data cloud related to the persistent homologies, which differ for different motor activity tasks. The estimated Betti numbers has been used as features in k-NN classifier to discriminate left or right hand motor intentions. © 2019 Elsevier B.V., All rights reserved.Conference Object Kolonoskopi Görüntülerinden Otomatik Ülseratif Kolit Teşhisi(Institute of Electrical and Electronics Engineers Inc., 2018) Kacmaz, Rukiye Nur; Yilmaz, BulentUlcerative colitis (UC) is a disease in which inner surface of colon is inflamed. Ulcers and open scars on the colon are observed. The complaint in the flare period is the frequent bloody diarrhea. Complaints of people with UC increase and decrease periodically. Colonoscopy is the most preferred approach for the visualization of the gastrointestinal tract for the diagnosis and follow-up of related diseases, and UC in particular. The lack of experience of the colonoscopist, complicated locality of the lesion, and the rush in the colonoscopy suite to complete the procedure as soon as possible may cause mistakes in visual analysis. In this study, 200 colonoscopy images (100 normal, 100 UC) were used. The statistical features such as gray level variance, gray level local variance, normalized variance, histogram range, and entropy were extracted from the images, and a normalized 200x5 feature matrix was formed. The normal images and images with UC were discriminated using support vector machines and k-nearest neighbors. It should be noted that the extraction of only 5 features from the colonoscopy images resulted in 95% accuracy. This study demonstrated the feasibility of the development of software tools for aiding the physicians in the diagnosis of colon diseases. © 2019 Elsevier B.V., All rights reserved.Article Citation - Scopus: 2Improving Short-Term Memory Performance of Healthy Young Males Using Alpha Band Neurofeedback(International Society for Neurofeedback and Research, 2019) Gökşin, Barış; Yilmaz, Bulent; İçöz, KutayTo examine whether it was possible to improve short-term memory performance of healthy participants by increasing relative alpha band power (7–11.5 Hz) using neurofeedback, we first converted a commercial EEG device (EmotivEpoc) to a neurofeedback tool and collected data from 11 healthy Turkish male graduate students in five neurofeedback sessions. Before and after neurofeedback training, a memorization task using 10 English words and their Turkish meanings was applied to all participants. The results indicated that 6 out of 11 participants were able to enhance their relative alpha band power with respect to other bands in the frequency spectrum during neurofeedback sessions. Although there was no obvious improvement in their short-term memory performance, we may conclude that neurofeedback training was beneficial for the participants to focus their minds consciously. However, it is not easy to mention that neurofeedback training certainly improved or was irrelevant with short-term memory performance. This study is important in the sense that for such a focused group the use of a commercial, customized low-cost EEG device was shown to be feasible for neurofeedback training sessions. © 2019 Elsevier B.V., All rights reserved.Article 3D Sampling of K-Space With Non-Cartesian Trajectories in MR Imaging(Gazi Univ, Fac Engineering Architecture, 2025) Dundar, Mehmet Sait; Gumus, Kazim Z.; Yilmaz, BulentThis study presents an innovative approach to 3D k-space sampling in MR imaging using non-Cartesian concentric shell trajectories. The method involves 32 concentric shells of varying radii, allowing for rapid data acquisition through undersampling techniques. Simulations using IDEA software demonstrate that this approach can fill the k-space in less than one second, a significant time reduction compared to traditional FLASH sequences that can take 3-4 minutes. The concentric shell model enhances imaging efficiency by minimizing artifacts and ensuring uniform k-space filling, leading to higher resolution and faster scans. This technique shows promise for clinical applications, particularly in dynamic imaging scenarios such as acute stroke and pediatric radiology, where speed and precision are critical. As illustrated in Figure A, the concentric shell trajectories enable uniform k-space filling, significantly reducing scan times and improving image quality. These results are based on the simulations conducted with IDEA software.Article Citation - WoS: 22Citation - Scopus: 29Automated Quantification of Immunomagnetic Beads and Leukemia Cells from Optical Microscope Images(Elsevier Sci Ltd, 2019) Uslu, Fatma; Icoz, Kutay; Tasdemir, Kasim; Yilmaz, BulentQuantification of tumor cells is crucial for early detection and monitoring the progress of cancer. Several methods have been developed for detecting tumor cells. However, automated quantification of cells in the presence of immunomagnetic beads has not been studied. In this study, we developed computer vision based algorithms to quantify the leukemia cells captured and separated by micron size immunomagnetic beads. Color, size based object identification and machine learning based methods were implemented to quantify targets in the images recorded by a bright field microscope. Images acquired by a 40x or a 20x objective were analyzed, the immunomagnetic beads were detected with an error rate of 0.0171 and 0.0384 respectively. Our results reveal that the proposed method attains 91.6% precision for the 40x objective and 79.7% for the 20x objective. This algorithm has the potential to be the signal readout mechanism of a biochip for cell detection. (C) 2019 Elsevier Ltd. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 4Transfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectors(IEEE-Inst Electrical Electronics Engineers Inc, 2023) Altindis, Fatih; Banerjee, Antara; Phlypo, Ronald; Yilmaz, Bulent; Congedo, MarcoThis article presents a new transfer learning method named group learning, that jointly aligns multiple domains (many-to-many) and an extension named fast alignment that aligns any further domain to previously aligned group of domains (many-to-one). The proposed group alignment algorithm (GALIA) is evaluated on brain-computer interface (BCI) data and optimal hyper-parameter values of the algorithm are studied for classification performance and computational cost. Six publicly available P300 databases comprising 333 sessions from 177 subjects are used. As compared to the conventional subject-specific train/test pipeline, both group learning and fast alignment significantly improve the classification accuracy except for the database with clinical subjects (average improvement: 2.12 +/- 1.88%). GALIA utilizes cyclic approximate joint diagonalization (AJD) to find a set of linear transformations, one for each domain, jointly aligning the feature vectors of all domains. Group learning achieves a many-to-many transfer learning without compromising the classification performance on non-clinical BCI data. Fast alignment further extends the group learning for any unseen domains, allowing a many-to-one transfer learning with the same properties. The former method creates a single machine learning model using data from previous subjects and/or sessions, whereas the latter exploits the trained model for an unseen domain requiring no further training of the classifier.Article Citation - Scopus: 12Design and Multichannel Electromyography System-Based Neural Network Control of a Low-Cost Myoelectric Prosthesis Hand(Copernicus GmbH, 2021) Siddiq Ahmed, Saygin; Almusawi, Ahmed R.J.; Yilmaz, Bulent; Doǧru, NuranThis study introduces a new control method for electromyography (EMG) in a prosthetic hand application with a practical design of the whole system. The hand is controlled by a motor (which regulates a significant part of the hand movement) and a microcontroller board, which is responsible for receiving and analyzing signals acquired by a Myoware muscle device. The Myoware device accepts muscle signals and sends them to the controller. The controller interprets the received signals based on the designed artificial neural network. In this design, the muscle signals are read and saved in a MATLAB system file. After neural network program processing by MATLAB, they are then applied online to the prosthetic hand. The obtained signal, i.e., electromyogram, is programmed to control the motion of the prosthetic hand with similar behavior to a real human hand. The designed system is tested on seven individuals at Gaziantep University. Due to the sufficient signal of the Mayo armband compared to Myoware sensors, Mayo armband muscle is applied in the proposed system. The discussed results have been shown to be satisfactory in the final proposed system. This system was a feasible, useful, and cost-effective solution for the handless or amputated individuals. They have used the system in their day-to-day activities that allowed them to move freely, easily, and comfortably. © 2021 Elsevier B.V., All rights reserved.Conference Object Citation - Scopus: 2Beyin Dalgalari ve Baş Hareketiyle Gerçek Zamanli Robotik Araba Kontrolü(Institute of Electrical and Electronics Engineers Inc., 2018) Oztürk, Nedime; Yilmaz, Bulent; Onver, Ahmet YasinEmotiv Epoc Headset is a portable and low-cost device. In this study, Emotiv Epoc headset was used in order to obtain real-time gyro and EEG signals. The aim of this study was to control a robotic car in real-time by using head movement and opening and closing of the eyes. The maximum and minimum amplitude of the gyro signal, and the ratios of the beta waves of O1 and O2 channel to alpha waves of the same channels were used as threshold values. These threshold values were used to determine the direction of the robotic car. Because of its low-cost and easy implementation, Arduino Uno was used to manage the robotic car. This study has shown that brain waves and head movements can control a device in real time. This system has the potential to be used in neurofeedback and brain-computer interface applications. © 2019 Elsevier B.V., All rights reserved.Conference Object Kolonoskopi Görüntülerinde Bilineer İnterpolasyonun Tekstör Analizine Etkisi(Institute of Electrical and Electronics Engineers Inc., 2017) Kacmaz, Rukiye Nur; Yilmaz, BulentInterpolation is a method that is used to obtain unknown intensities with the help of known intensities on an image. This method is frequently used in the literature to eliminate light reflection on colonoscopy images. Texture features are the most important characteristics used to describe the region or objects of interest in the image. They are the measures of intensity variation of a surface that determine properties such as smoothness, roughness, and regularity. The aim of this study is to find out the how bilinear interpolation applied on colonoscopy images with reflection impact texture features obtained from the same images. A research carried out to make reasonable comparison between a texture feature from an image with no reflection and the same feature obtained from the same image with synthetically added reflections with various percentages. Using the approaches like gray level co-occurence matrix (GLCM), gray level run length matrix (GLRLM), neighborhood gray tone difference matrix (NGTDM) 126 features were extracted from each 32×32 sub-images coming from 610 colonoscopy images. Several of the features extracted from sub-images with no reflection and reflection were not statistically significantly different, while majority of them were affected from the reflections. © 2018 Elsevier B.V., All rights reserved.Article Citation - WoS: 26Citation - Scopus: 28Super Resolution Convolutional Neural Network Based Pre-Processing for Automatic Polyp Detection in Colonoscopy Images(Pergamon-Elsevier Science Ltd, 2021) Tas, Merve; Yilmaz, BulentColonoscopy is the most common methodology used to detect polyps on the colon surface. Increasing the image resolution has the potential to improve the automatic colonoscopy based diagnosis and polyp detection and localization. In this study, we proposed a pre-processing approach that uses convolutional neural network based super resolution method (SRCNN) to increase the resolution of the training colonoscopy images before the localization of polyps. We also investigated the use of CNN based models such as the Single Shot MultiBox Detector (SSD) and Faster Regional CNN (RCNN) for real-time polyp detection and localization. Our results showed that using SRCNN method before the training process provides better results in terms of accuracy in both models compared to the low-resolution cases. Furthermore, we reached an F2 score of 0.945 for the correct localization of colon polyps using Faster RCNN with ResNet-101 feature extractor.Article Citation - Scopus: 1Robust Controller Electromyogram Prosthetic Hand With Artificial Neural Network Control and Position(Indian Journal of Forensic Medicine and Toxicology ijfmt@hotmail.com, 2020) Ahmed, Saygin Siddiq; Ahmed, Aydin S.; Yilmaz, Bulent; Doǧru, NuranIn this study, we proposed and designed a new control method for an electromyographically (EMG) controlled prosthetic hand. The objective is to increase the control efficiency of the human–machine interface and afford greater control of the prosthetic hand. The process works as follows: EMG biomedical signals acquired from Myoware sensors positioned on the relevant muscles are sent to the robot that consist of hand, Arduino and MATLAB program, which computes and controls the hand position in free space along with hand grasping operations. The Myoware device acquires muscle signals and sends them to the Arduino. The Arduino analyzes the received signals, based on which it controls the motor movement. In this design, the muscle signals are read and saved in a MATLAB system file. After program processing on the industrial hand which is applied by MATLAB simulation, the corresponding movement is transferred to the hand, enabling movements, such as, hand opening and closing according to the signal stored in the MATLAB system. In this study, hand and fingerprints were designed using a three-dimensional printer by separate recording finger and thumb signals. The muscle signals were then analyzed in order to obtain peak signal points and convert them into data. These results indicate the effectiveness of the proposed method and demonstrate the superiority of the method for amputees because of the improved controllability and perceptibility afforded by the design. © 2020 Elsevier B.V., All rights reserved.Article Citation - WoS: 16Citation - Scopus: 20Parameter Investigation of Topological Data Analysis for EEG Signals(Elsevier Sci Ltd, 2021) Altindis, Fatih; Yilmaz, Bulent; Borisenok, Sergey; Icoz, KutayTopological data analysis (TDA) methods have become appealing in EEG signal processing, because they may help the scientists explore new features of complex and large amount of data by simplifying the process from a geometrical perspective. Time delay embedding is a common approach to embed EEG signals into the state space. Parameters of this embedding method are variable and the structure of the state space can be entirely different depending on their selection. Additionally, extracted persistent homologies of the state spaces depend on filtration level and the number of points used. In this study, we showed how to adapt false nearest neighbor (FNN) test to find out the suitable/optimal time embedding parameters (i.e., time delay and embedding dimension) for EEG signals, and compared their effects on different types of artefacts and motor intention waves that are commonly used in brain-computer interfaces. We extracted and compared persistent homologies of state spaces that were reconstructed with four different sets of parameters. Later, the effect of filtration level on extracted persistent homologies was compared, and statistical significance levels were computed between leftand right-hand movement imaginations. Finally, computational cost of the discussed methods was found, and the adaptability of this method to a real-time application was evaluated. We demonstrated that the discussed parameters of the TDA approach were highly crucial to extract true topological features of the EEG signals, and the adapted testing approaches depicted the applicability of this approach on real-time analysis of EEG signals.Conference Object Citation - WoS: 1Automatic Blurry Colon Image Detection Using Laplacian Operator-Based Features(Elsevier Science Bv, 2018) Yilmaz, Bulent; Kacmaz, Rukiye Nur; Dundar, Mehmet Sait
