1. Home
  2. Browse by Author

Browsing by Author "Yilmaz, Anil"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Amelioration potential of synthetic oxime chemical cores against multiple sclerosis and Alzheimer's diseases: Evaluation in aspects of in silico and in vitro experiments
    (ELSEVIER, 2024) Yilmaz, Anil; Koca, Murat; Ercan, Selami; Acar, Ozden Ozgun; Boga, Mehmet; Sen, Alaattin; Kurt, Adnan; 0000-0002-8444-376X; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Sen, Alaattin
    Alzheimer disease (AD) and multiple sclerosis (MS) are inflammatory neurological disorders. The main symptom of AD is dementia, and the main symptoms of MS are vertigo, sexual dysfunction, cognitive problems, and fatigue. Today, millions of people are affected by AD and MS, and the number is growing day by day. However, there are not any accurate remedies for both disorders. For this reason, discovering novel drug molecules against neurological disorders such as AD and MS is essential and precious. Oximes and benzofurans exhibit many pharmacological effects including anti-inflammatory and neurological activities. Thus, several novel compounds bearing oxime and benzofuran chemical cores were designed and synthesized, and their in vitro anticholinesterase activities were investigated in our previous study. A number of the synthesized molecules showed excellent anticholinesterase activity against both AChE and BChE enzymes. The mentioned study constituted a background for this study. In this study, we picked different chemical skeletons among all the synthesized molecules to conduct further in silico and in vitro experiments. In order to support our in vitro anticholinesterase findings, we also examined in silico anti-Alzheimer activity of the selected molecules. In addition, in silico and in vitro activities against MS disease of the synthesized molecules were investigated. Molecule 4 extraordinarily showed outstanding activity against AD disease both in silico and in vitro, as well as in silico activity against MS disease. This feature makes molecule 4 a possible drug lead molecule which is very limited in the market. On the other hand, molecule 1, a less substituted oxime skeleton, demonstrated the strongest in vitro activity against MS disease through in vitro anti-inflammatory effect. As an observation, molecule 4 was determined to be the most promising molecule to focus on in the further steps.
  • Loading...
    Thumbnail Image
    Article
    Natural diterpenoid alysine A isolated from Teucrium alyssifolium exerts antidiabetic effect via enhanced glucose uptake and suppressed glucose absorption
    (SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK, ATATURK BULVARI NO 221, KAVAKLIDERE, TR-06100 ANKARA, TURKEY, 2019) Sen, Alaattin; Ayar, Buket; Yilmaz, Anil; Acar, Ozden Ozgun; Turgut, Gurbet Celik; Topcu, Gulacti; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü;
    Teucrium species have been used in folk medicine as antidiabetic, antiinflammatory, antiulcer, and antibacterial agents. We have explored in vitro antidiabetic impacts of 2 natural diterpenoids, alysine A and alysine B, isolated from Teucrium alyssifolium. The lactate dehydrogenase (LDH) cytotoxicity assay, glucose uptake test, glucose utilization (glycogen content) test, glucose transport test, glucose absorption (a-glucosidase activity) test, insulin secretion test, RNA isolation and cDNA synthesis assay, qPCR quantification assays, and statistical analyses were carried out in the present study. Alysine A exerted the following effects at non-cytotoxic doses: Enhanced the glucose uptake, as much as the insulin in the C2C12, HepG2, and 3T3-L1 cells Increased the glycogen content in the C2C12 and HepG2 liver cells, significantly higher than the insulin and metformin Suppressed the alpha-glucosidase and the GLUT2 expression levels in the Caco-2 cells Suppressed the SGLT1 and GLUT1-5 expression levels in the Caco-2 cells Induced the insulin receptor substrate (IRS)1 and GLUT2 expression levels of the BTC6 pancreatic cells Induced the insulin receptor (INSR), IRS2, phosphoinositide 3-kinase (PI3K), GLUT4, and protein kinase (PK) expression levels of the 3T3-L1 and C2C12 cells Increased glucose transport through the Caco-2 cell layer Did not influence insulin secretion in the pancreatic BTC6 cells Consequently, these data strongly emphasized the antidiabetic action of alysine A on the particularly critical model mechanisms that assume a part in glucose homeostasis, such as glucose uptake, utilization, and storage. Moreover, the expression level of the essential genes in glucose metabolism and insulin signaling was altered in a way that the results would be antihyperglycemic. A blend of in vitro and in situ tests affirmed the antihyperglycemic action of alysine A and its mechanism. Alysine A has exercised significant and positive results on the glucose homeostasis; thus, it is a natural and pleiotropic antidiabetic agent. Advanced in vivo studies are required to clarify the impact of this compound on glucose homeostasis completely.