Browsing by Author "Yildiz, Tevhide Ayca"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Ab Initio Study of Boron-Rich Amorphous Boron Carbides(Wiley, 2023) Yildiz, Tevhide Ayca; Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiAmorphous boron carbide compositions having high B contents (BxC1-x, 0.50 <= x <= 0.95) are systematically created by way of ab initio molecular dynamics calculations, and their structural, electrical, and mechanical characteristics are inclusively investigated. The coordination number of both B and C atoms increases progressively with increasing B/C ratio and more close-packed materials having pentagonal pyramid motifs form. An amorphous diamond-like local arrangement is found to be dominant up to 65% B content, and beyond this content, a mixed state of amorphous diamond- and B-like structures is perceived in the models because sp(3) hybridization around C atoms is still leading one for all compositions. The pentagonal pyramid motifs around C atoms are anticipated to appear beyond 65% content. The intericosahedral linear C-B-C chains do not form in any model. All amorphous boron carbides are semiconducting materials. The mechanical properties gradually increase with increasing B concentration, and some amorphous compositions are proposed to be hard materials on the basis of their Vickers hardness estimation.Correction Amorphous Boron Carbide From Ab Initio Simulations(Elsevier, 2023) Yildiz, Tevhide Ayca; Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiArticle Citation - WoS: 5Citation - Scopus: 5Amorphous Boron Carbide From Ab Initio Simulations(Elsevier, 2020) Yildiz, Tevhide Ayca; Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiAn amorphous boron carbide (a-B4C) model is generated by means of ab-initio molecular dynamics calculations within a generalized gradient approximation and its structural, mechanical and electrical features are discussed in details. The mean coordination number of B and C atoms is estimated to be 5.29 and 4.17, respectively. The pentagonal pyramid-like motifs for B atoms, having sixfold coordination, are the main building units in a-B4C and some of which involve with the development of B-12 icosahedra. On the other hand, the fourfold-coordinated units are the leading configurations for C atoms. Surprisingly the formation of C-C bonds is found to be less favorable in the noncrystalline network, compared to the crystal. a-B4C is a semiconducting material having an energy band gap considerably less than that of the crystal. A noticeably decrease in the mechanical properties of B4C is observed by amorphization. Nonetheless a-B4C is categorized as a hard material due to its high Vickers hardness of about 24 GPa.Article Citation - WoS: 11Citation - Scopus: 12The Hansen Solubility Approach Towards Green Solvent Processing: N-Channel Organic Field-Effect Transistors Under Ambient Conditions(Royal Soc Chemistry, 2024) Deneme, Ibrahim; Yildiz, Tevhide Ayca; Kayaci, Nilgun; Usta, Hakan; 01. Abdullah Gül University; 10. Rektörlük; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiThe adoption of green solvents is of utmost importance for the solution-based fabrication of semiconductor thin films and for the commercialization of (opto)electronic devices, especially in response to evolving regulatory mandates for handling organic materials. Despite the increasing interest in this area, the scarcity of green solvent-processed n-channel OFETs, especially functioning under ambient conditions, highlights the need for further research. In this study, we demonstrated the Hansen solubility approach to study the solubility behavior of an ambient-stable n-type semiconductor, 2,2' -(2,8-bis(3-dodecylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile (beta,beta'-C-12-TIFDMT), and to analyze potential green solvents for thin-film processing. The Hansen solubility parameters were determined to be delta(D) = 20.8 MPa1/2, delta(P) = 5.8 MPa1/2, and delta(H) = 5.5 MPa1/2 with a radius (R-0) of 8.3 MPa1/2. A green solvent screening analysis based on the minimal distance constraint and quantitative sustainability score identified ethoxybenzene, anisole, 2-methylanisole, and 2-methyltetrahydrofuran as suitable green solvents (R-a's = 5.17-7.93 MPa1/2 < R-0). A strong thermodynamic correlation was identified between the solubility and the semiconductor-solvent distance in the 3D Hansen solubility space, in which the maximum solubility limit could be estimated with the enthalpy of fusion (Delta H-fus) and melting temperature (T-mp) of the semiconductor. To the best of our knowledge, this relationship between the maximum solubility limit and thermal properties has been established for the first time for organic semiconductors. Bottom-gate/top-contact OFETs fabricated by spin-coating the semiconductor green solutions exhibited mu es reaching similar to 0.2 cm(2) V-1 s(-1) (I-on/I-off similar to 10(6)-10(7) and V-on similar to 0-5 V) under ambient conditions. This device performance, to our knowledge, is the highest reported for an ambient-stable green solvent-processed n-channel OFET. Our HSP-based rational approach and unique findings presented in this study can shed critical light on how green solvents can be efficiently incorporated in solution processing in organic (opto)electronics, and whether ambient-stable n-type semiconductors can continue to play an important role in green OFETs.Article Labyrinthine Microstructures with a High Dipole Moment Boron Complex for Molecular Physically Unclonable Functions(Amer Chemical Soc, 2025) Yildiz, Tevhide Ayca; Kiremitler, N. Burak; Kayaci, Nilgun; Kalay, Mustafa; Ozcan, Emrah; Deneme, Ibrahim; Usta, Hakan; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 10. RektörlükThe design and development of novel molecular-physically unclonable functions (PUFs) with advanced encoding characteristics and ease of fabrication have recently attracted attention in cryptography, secure authentication, and anticounterfeiting. Here, we report the development of a new high dipole-moment small molecule, InIm-BF2, a difluoroborate complex of an indolyl-imine ligand, and the fabrication of unique labyrinthine patterns through a facile two-step thin film process under ambient conditions. The new molecule has a dipolar, coplanar pi-backbone and arranges in the solid state with antisymmetric cofacial pi-stackings (3.86 & Aring;). These properties, along with short C-Hpi contacts (2.74-2.88 & Aring;) and nonclassical C-HF hydrogen bonds (2.47-2.51 & Aring;) (23.4% and 11.5% of the Hirshfeld surfaces, respectively), drive the formation of amorphous molecular PUF patterns with disordered, short-range interactions. Spin-coating followed by thermal annealing at a moderate temperature produces nanoscopic molecular thin films with intricate labyrinthine patterns. These patterns, characterized by interconnected, irregularly shaped, micron-sized (approximate to 50-100 mu m) features, exhibit excellent PUF characteristics, verified through advanced image analysis and computational algorithms. Unlike randomly positioned isolated features in classical binarized keys, the interconnected labyrinthine patterns possess rich entropy and complex features, directly authenticated via deep-learning methodologies. Our work not only demonstrates a facile, promising approach to fabricating unique high-entropy PUF patterns but also provides critical insights into designing advanced molecular materials for next-generation security applications.Article Citation - WoS: 3Citation - Scopus: 3Stoichiometric Amorphous Boron Carbide (BC)(Springer, 2020) Yildiz, Tevhide Ayca; Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiIn this work, a stoichiometric amorphous boron carbide (a-BC) network is constructed via an ab initio molecular dynamics approach. Its structural, electrical and mechanical features are reconnoitered in details and compared with those of turbostratic BC and some important graphite-like amorphous materials. Our computer-generated structure exhibits strong chemical disorder as seen in turbostratic BC. However, it has mixed sp(2) and sp(3) hybridizations and the average coordination number of B and C atoms is projected to be similar to 3.22 and 3.46, correspondingly. Consequently, a-BC appears to be structurally different from turbostratic BC and graphite-like amorphous systems. a-BC is semiconductor having a theoretical band gap of similar to 0.20 eV. The bulk, Young's and shear moduli are estimated as similar to 105, 142 and 56 GPa, respectively. Its Vickers hardness is calculated to be about 7-8.5 GPa. a-BC is anticipated to be electronically and mechanically parallel to amorphous boron carbonitride.
