1. Home
  2. Browse by Author

Browsing by Author "Yildirim, Veli Can"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Deep learning approaches for vehicle type classification with 3-D magnetic sensor
    (ELSEVIER, 2022) Kolukisa, Burak; Yildirim, Veli Can; Elmas, Bahadir; Ayyildiz, Cem; Gungor, Vehbi Cagri; 0000-0003-0423-4595; 0000-0003-0803-8372; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Gungor, Vehbi Cagri; Kolukisa, Burak
    In the Intelligent Transportation Systems, it is crucial to determine the type of vehicles to improve traffic management, increase human comfort, and enable future development of transport infrastructures. This paper presents a deep learning-based vehicle type classification approach for intermediate road traffic. Specifically, a low-cost, easy-to-install, battery-operated 3-D traffic sensor is designed and developed. In addition, a total of 376 vehicle samples are collected, and the vehicles are identified into three different classes according to their structures: light, medium, and heavy. Firstly, an oversampling method is applied to increase the number of samples in the training set. Then, the signals are converted into time series for LSTM and GRU and 2-D images for transfer learning models. Finally, soft voting is proposed using the LSTM, GRU, and VGG16, which is the best transfer learning method for vehicle type classification. The developed system is portable, power-limited, battery-operated, and reliable. Comparative performance results show that the soft voting ensemble method using a deep learning classifier improves the accuracy and f-measure performances by 92.92% and 93.42%, respectively. Additionally, the battery lifetime of the developed magnetic sensor node can work for up to 2 years.
  • Loading...
    Thumbnail Image
    Article
    A deep neural network approach with hyper-parameter optimization for vehicle type classification using 3-D magnetic sensor
    (ELSEVIER, 2023) Kolukisa, Burak; Yildirim, Veli Can; Ayyildiz, Cem; Gungor, Vehbi Cagri; 0000-0003-0423-4595; 0000-0003-0803-8372; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Gungor, Vehbi Cagri; Kolukısa, Burak
    The identification of vehicle types plays a critical role in Intelligent Transportation Systems. In this study, battery-operated, easy-to-install, low-cost 3-D magnetic traffic sensors have been developed for vehicle type classification problems. In addition, a new machine learning approach based on deep neural networks (DNN) with hyper-parameter optimization using feature selection and extraction methods has been proposed for vehicle type classification. A dataset is collected from the field, and vehicles are classified into three different classes, i.e., light: motorcycles, medium: passenger cars, and heavy: buses, based on vehicle structures and sizes. The proposed system is portable, energy-efficient, and reliable. The performance results show that the proposed method, which is based on a DNN classifier, has an accuracy of 91.15%, an f-measure of 91.50%, and a battery life of up to 2 years.