1. Home
  2. Browse by Author

Browsing by Author "Yenigul, Munevver"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Cytotoxic and Cytostatic Effects of Targeting mTOR and Hedgehog Pathways in Acute Myeloid Leukemia
    (İstanbul Üniversitesi Yayınevi, 2022) Çiçek, Enes; Kucuktas, Fulya Mina; Yenigul, Munevver; Gencer Akcok, Emel Basak; 0000-0002-7452-2253; 0000-0001-7682-4012; 0000-0003-0468-721X; 0000-0002-6559-9144; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Çiçek, Enes; Kucuktas, Fulya Mina; Yenigul, Munevver; Gencer Akcok, Emel Basak
    Objectives: Acute myeloid leukemia (AML) is a highly aggressive heterogeneous hematopoietic malignancy characterized by a rapid and abnormal proliferation of immature myeloid leukemia cells in the bone marrow and peripheral blood. Aberrant alterations in signal transduction pathways are strongly associated with the progression of AML. This study aimed to investigate cell viability and the cell cycle in AML cells by targeting the Hedgehog and mTOR signaling pathways with rapamycin and GANT61. Materials and Method: The antiproliferative effect of rapamycin and GANT61 was assessed by the MTT cell viability assay in two AML cell lines: CMK and MOLM-13. The effect of the inhibitors on cell-cycle distribution was determined using propidium iodide staining and measured with flow cytometry. Results: Rapamycin, an mTOR inhibitor, and GANT61, a Gli-1 inhibitor, decreased the cell proliferation of CMK and MOLM-13 cells. The IC20 values, which is the drug concentration that inhibits cell growth by 20%, were combined and administered to the cells. The results show the drugs to have a combinatorial inhibitory effect on CMK cells but not on MOLM-13 cells. In addition, the combination of drugs arrested the cells during the G0/G1 phase. Conclusion: This study suggests a novel combination therapy approach for AML via mTOR and Hedgehog signaling pathway inhibition using rapamycin and GANT61, respectively. It also suggest further studies be performed to reveal the mechanism of action.
  • Loading...
    Thumbnail Image
    Article
    Ethacrynic acid and cinnamic acid combination exhibits selective anticancer effects on K562 chronic myeloid leukemia cells
    (SPRINGER, 2022) Yenigul, Munevver; Akcok, Ismail; Gencer Akcok, Emel Basak; 0000-0002-6559-9144; 0000-0002-5444-3929; 0000-0003-0468-721X; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Yenigul, Munevver; Akcok, Ismail; Gencer Akcok, Emel Basak
    Background Despite the recent advances in chemotherapy, the outcomes and the success of these treatments still remain insufficient. Novel combination treatments and treatment strategies need to be developed in order to achieve more effective treatment. This study was designed to investigate the combined effect of ethacrynic acid and cinnamic acid on cancer cell lines. Methods The anti-proliferative effect of ethacrynic acid and cinnamic acid was investigated by MTT cell viability assay in three different cancer cell lines. Combination indexes were calculated using CompuSyn software. Apoptosis was assessed by flow cytometric Annexin V-FITC/PI double-staining. The effect of the inhibitors on cell cycle distribution was measured by propidium iodide staining. Results The combination treatment of ethacrynic acid and cinnamic acid decreased cell proliferation significantly, by 63%, 75% and 70% for K562, HepG2 and TFK-1 cells, respectively. A 5.5-fold increase in the apoptotic cell population was observed after combination treatment of K562 cells. The population of apoptotic cells increased by 9.3 and 0.4% in HepG2 and TFK-1 cells, respectively. Furthermore, cell cycle analysis shows significant cell cycle arrest in S and G2/M phase for K562 cells and non-significant accumulation in G0/G1 phase for TFK-1 and HepG2 cells. Conclusions Although there is a need for further investigation, our results suggest that the inhibitors used in this study cause a decrease in cellular proliferation, induce apoptosis and cause cell cycle arrest.
  • Loading...
    Thumbnail Image
    Article
    Histone Deacetylase Inhibition and Autophagy Modulation Induces a Synergistic Antiproliferative Effect and Cell Death in Cholangiocarcinoma Cells
    (AMER CHEMICAL SOC, 2023) Yenigul, Munevver; Akcok, Emel Basak Gencer; 0000-0003-0468-721X; 0000-0002-6559-9144; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Yenigul, Munevver; Akcok Gencer, Emel Basak Emel Basak
    Cholangiocarcinoma, also known as biliary tract cancer,is an aggressiveadenocarcinoma arising from epithelial cells lining the intra- andextrahepatic biliary system. The effects of autophagy modulators andhistone deacetylase (HDAC) inhibitors in cholangiocarcinoma are notfully known. It is essential to understand the molecular mechanismsand the effects of HDAC inhibitors in the context of cholangiocarcinoma.The antiproliferative effect of different HDAC inhibitors and autophagymodulation was investigated by the MTT cell viability assay in TFK-1and EGI-1 cholangiocarcinoma cell lines. Combination indexes werecalculated using CompuSyn software. Consequently, apoptosis was detectedby Annexin V/PI staining. The effect of the drugs on the cell cyclewas measured by the propidium iodide staining. The HDAC inhibitionwas confirmed via acetylated histone protein levels by western blotting.HDAC inhibitors, MS-275 and romidepsin, showed a better synergisticeffect with the nocodazole combination. The combination treatmentexerted its growth inhibitory effect by cell cycle arrest and inductionof apoptosis. The cell cycle analysis of the combination treatmentshowed that the S phase and G2/M phase were achieved. Moreover, thenecrotic and apoptotic cell population increased after single HDACinhibitors and combination treatment. The anti-cancer effect of HDACinhibitors is revealed by acetylation levels of histones. While acetylationlevels were increased in response to HDAC inhibitors and autophagymodulator combinations, the HDAC expression decreased. This studyhighlights the importance of the combination of HDAC inhibition andautophagy modulators and demonstrates a synergistic effect, whichcould be a promising therapy and novel treatment approach for cholangiocarcinoma.