Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Yagmur, Eren"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Elastic Modulus Prediction for Fiber-Reinforced Concretes
    (Pamukkale Univ, 2020) Yagmur, Eren
    In this study, the effects of different discrete fiber types on the elastic modulus of concrete are investigated. For this purpose, 260 cylindrical pressure test specimens are compiled. The fiber types considered are steel, PVA, polypropylene, polyolefin, basalt and olefin. The results of the study are showed that if the ratio of coarse aggregate to fine aggregate exceeds 1.5 for all fiber types, the compressive strength of concrete decreases. It has been observed that the elastic modulus increases in cases where the fiber aspect ratio of the steel fibers is less than and equal to 60, while the elastic modulus decreases for values greater than 60. An elastic modulus equation, which applies to all fiber types considered, is proposed. The proposed equation is compared with the experimental results and the other formulas in the literature and the validity of the equations for different cases are questioned.
  • Loading...
    Thumbnail Image
    Article
    Shear Strength Prediction for Fiber Reinforced Concrete Beams
    (Taylor and Francis Ltd., 2025) Burak Bakir, Burcu; Yagmur, Eren
    Discrete fibers are often used to increase the tensile and shear strengths of reinforced concrete. Influence of fibers on the behavior of shear critical members is quite significant, therefore, it is crucial to accurately estimate the fiber contribution to ultimate strength. In this study, first a comprehensive database of 446 FRC shear critical beams from 51 different experimental studies is compiled and nonlinear correlation analyses are utilized to identify the key parameters affecting the shear strength. Then, parametric equations are developed to obtain interfacial bond strength of fibers and shear strength of beams with different fiber types, volume fractions, aspect ratios and reinforcement detailing. Shear strengths corresponding to both shear and flexural failures are computed to verify the failure mode. Comparison of the predicted and experimental load carrying capacities indicates the improved accuracy of the prediction equation when compared to the code requirements and existing equations. Due to its applicability to FRC beams with different configurations, reinforcement detailing, fiber types and failure modes, the proposed method is feasible for integration into structural codes as a conservative and practical design approach. © 2025 Elsevier B.V., All rights reserved.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback