1. Home
  2. Browse by Author

Browsing by Author "Voskergian, Daniel"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    eTNT: Enhanced TextNetTopics with Filtered LDA Topics and Sequential Forward / Backward Topic Scoring Approaches
    (SCIENCE & INFORMATION-SAI ORGANIZATION LTD, 2024) Voskergian, Daniel; Jayousi, Rashid; Bakir-Gungor, Burcu; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir-Gungor, Burcu
    TextNetTopics is a novel text classification-based topic modelling approach that focuses on topic selection rather than individual word selection to train a machine learning algorithm. However, one key limitation of TextNetTopics is its scoring component, which evaluates each topic in isolation and ranks them accordingly, ignoring the potential relationships between topics. In addition, the chosen topics may contain redundant or irrelevant features, potentially increasing the feature set size and introducing noise that can degrade the overall model performance. To address these limitations and improve the classification performance, this study introduces an enhancement to TextNetTopics. eTNT integrates two novel scoring approaches: Sequential Forward Topic Scoring (SFTS) and Sequential Backward Topic Scoring (SBTS), which consider topic interactions by assessing sets of topics simultaneously. Moreover, it incorporates a filtering component that aims to enhance topics' quality and discriminative power by removing non-informative features from each topic using Random Forest feature importance values. These integrations aim to streamline the topic selection process and enhance classifier efficiency for text classification. The results obtained from the WOS-5736, LitCovid, and MultiLabel datasets provide valuable insights into the superior effectiveness of eTNT compared to its counterpart, TextNetTopics.
  • Loading...
    Thumbnail Image
    Article
    TextNetTopics Pro, a topic model-based text classification for short text by integration of semantic and document-topic distribution information
    (FRONTIERS MEDIA SA, 2023) Voskergian, Daniel; Bakir-Gungor, Burcu; Yousef, Malik; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir-Gungor, Burcu
    With the exponential growth in the daily publication of scientific articles, automatic classification and categorization can assist in assigning articles to a predefined category. Article titles are concise descriptions of the articles’ content with valuable information that can be useful in document classification and categorization. However, shortness, data sparseness, limited word occurrences, and the inadequate contextual information of scientific document titles hinder the direct application of conventional text mining and machine learning algorithms on these short texts, making their classification a challenging task. This study firstly explores the performance of our earlier study, TextNetTopics on the short text. Secondly, here we propose an advanced version called TextNetTopics Pro, which is a novel short-text classification framework that utilizes a promising combination of lexical features organized in topics of words and topic distribution extracted by a topic model to alleviate the data-sparseness problem when classifying short texts. We evaluate our proposed approach using nine state-of-the-art short-text topic models on two publicly available datasets of scientific article titles as shorttext documents. The first dataset is related to the Biomedical field, and the other one is related to Computer Science publications. Additionally, we comparatively evaluate the predictive performance of the models generated with and without using the abstracts. Finally, we demonstrate the robustness and effectiveness of the proposed approach in handling the imbalanced data, particularly in the classification of Drug-Induced Liver Injury articles as part of the CAMDA challenge. Taking advantage of the semantic information detected by topic models proved to be a reliable way to improve the overall performance of ML classifiers.
  • Loading...
    Thumbnail Image
    Other
    TextNetTopics-SFTS-SBTS: TextNetTopics Scoring Approaches Based Sequential Forward and Backward
    (Springer Science and Business Media Deutschland GmbH, 2024) Voskergian, Daniel; Bakir-Gungor, Burcu; Yousef, Malik; 0009-0005-7544-9210; 0000-0002-2272-6270; 0000-0001-8780-6303; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Moleküler Biyoloji ve Genetik Bölümü; Bakir-Gungor, Burcu
    TextNetTopics is a text classification-based topic modeling approach that performs topic selection rather than word selection to train a machine learning algorithm. However, one main limitation of TextNetTopics is that its scoring component (the S component) assesses each topic independently and ranks them accordingly, neglecting the potential relationship between topics. In order to address this limitation and improve the classification performance, this study introduces an enhancement to TextNetTopics. TextNetTopics-SFTS-SBTS integrates two novel scoring approaches: Sequential Forward Topic Scoring (SFTS) and Sequential Backward Topic Scoring (SBTS), which consider topic interactions by assessing sets of topics simultaneously. This integration aims to streamline the topic selection process and enhance classifier efficiency for text classification. The results obtained across three datasets offer valuable insights into the context-dependent effectiveness of the new scoring mechanisms across diverse datasets and varying numbers of topics involved in the analysis.