1. Home
  2. Browse by Author

Browsing by Author "Uzal, N."

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 60
    Analysis of the Best Available Techniques for Wastewaters from a Denim Manufacturing Textile Mill
    (Academic Press Ltd- Elsevier Science Ltd, 2017) Yukseler, H.; Uzal, N.; Sahinkaya, E.; Kitis, M.; Dilek, F. B.; Yetis, U.; 01. Abdullah Gül University; 02.03. İnşaat Mühendisliği; 02. Mühendislik Fakültesi
    The present study was undertaken as the first plant scale application and evaluation of Best Available Techniques (BAT) within the context of the Integrated Pollution Prevention and Control/Industrial Emissions Directive to a textile mill in Turkey. A "best practice example" was developed for the textile sector; and within this context, BAT requirements for one of the World's leading denim manufacturing textile mills were determined. In order to achieve a sustainable wastewater management; firstly, a detailed wastewater characterization study was conducted and the possible candidate wastewaters to be reused within the mill were identified. A wastewater management strategy was adopted to investigate the possible reuse opportunities for the dyeing and finishing process wastewaters along with the composite mill effluent. In line with this strategy, production processes were analysed in depth in accordance with the BAT Reference Document not only to treat the generated wastewaters for their possible reuse, but also to reduce the amount of water consumed and wastewater generated. As a result, several applicable BAT options and strategies were determined such as reuse of dyeing wastewaters after treatment, recovery of caustic from alkaline finishing wastewaters, reuse of biologically treated composite mill effluent after membrane processes, minimization of wash water consumption in the water softening plant, reuse of concentrate stream from reverse osmosis plant, reducing water consumption by adoption of counter-current washing in the dyeing and finishing processes. The adoption of the selected in-process BAT options for the minimization of water use provided a 30% reduction in the total specific water consumption of the mill. The treatability studies adopted for both segregated and composite wastewaters indicated that nanofiltration is satisfactory in meeting the reuse criteria for all the wastewater streams considered. (C) 2017 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 14
    Citation - Scopus: 12
    A Holistic Sustainability Assessment of a University Campus Using Life Cycle Approach
    (Springer, 2023) Gulcimen, S.; Qadri, S.; Donmez, R. O.; Uzal, N.; 01. Abdullah Gül University; 02.03. İnşaat Mühendisliği; 02. Mühendislik Fakültesi
    The sustainability performances of campuses are of importance as it could model the effective sustainable initiatives that could be then applied to campuses by decision-makers and designers. Studies have been conducted on the environmental and economic assessment of campuses in specification with the identification of their carbon footprint and cost analysis, respectively. The studies have lacked a showcase of an ideal sustainable campus along with its urban and architectural features, facilities, and services through analyzing their social aspects as well. The objective of this study was to evaluate the sustainability of the Abdullah Gul University Sumer Campus to model a sustainable campus integrating the Environmental Life Cycle Assessment(E-LCA), the Life Cycle Costing (LCC) and the Social Life Cycle Assessment using life cycle sustainability assessment approaches for the use-phase analysis of the campus. E-LCA was applied to quantify the global warming potential and cumulative energy demand based on International Organization for Standardization 14,040 and 14,044 by considering the gate-to-gate approach. The environmental assessment results showed that the global warming potential of the campus was 2.92 tCO(2) eq./person, and the cumulative energy demand was found as 15.4 GJ/person. In LCC, the total cost of the campus was calculated as 200 US Dollars/person, and the energy cost is found as a major contributor with 86% of the total cost for the year of 2019. In the social performance assessment, it is found that the university has a weak social performance for the local community, the consumer, the worker, and the society.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 54
    Citation - Scopus: 69
    An Integrated Life Cycle Assessment Approach for Denim Fabric Production Using Recycled Cotton Fibers and Combined Heat and Power Plant
    (Elsevier Sci Ltd, 2021) Fidan, F. S.; Aydogan, E. K.; Uzal, N.; 01. Abdullah Gül University; 02.02. Endüstri Mühendisliği; 02. Mühendislik Fakültesi; 02.03. İnşaat Mühendisliği
    Due to the increase in consumption and awareness of environmental impacts, switching to new business models has become mandatory in the textile industry. The aim of this study is to investigate the contribution of using mechanically recycled cotton fiber instead of virgin cotton fiber, which is one of the most important raw materials in textiles and grown using a high amount of water and pesticides, and combined heat and power (CHP) plant instead of grid energy in terms of the environmental impacts, cost, and quality of denim fabric product via 8 scenarios using an integrated sustainability assessment approach. The scenarios were identified according to the use of the CHP plant in the manufacturing process and the ratio of recycled cotton fiber used in the product. Environmental impacts were analyzed using the life cycle assessment approach (LCA). Besides the environmental impact analyses, product quality and cost-savings of all scenarios were also examined using TODIM (an acronym in Portuguese for Interactive and Multicriteria Decision Making) method to apply an integrated approach for sustainable denim fabric production. Global warming potential (GWP), acidification potential(AP), eutrophication potential(EP), water use, and cumulative energy demand(CED) were investigated as environmental impact categories in the production of denim fabric. In addition to environmental impact categories washed weight, tear, tensile, and cost-saving were determined as the attributes of TODIM. According to the LCA results, the highest environmental impact improvements were obtained as 98% water use, 90% EP, 74% AP, 63% CED, and 54% GWP for scenario 8 with 100% recycled cotton and CHP plant use. Besides, the use of the CHP plant offered 4% GWP and 0.42% water usage saving regardless of the recycled cotton ratio. In addition, scenario 8 also showed the best performance for the integrated sustainability assessment by TODIM. It is obviously demonstrated that the use of the mechanically recycled cotton as a raw material and CHP plant as an energy source through the manufacturing processes of denim production will facilitate the transfer of traditional linear economy business models of companies to the circular economy. (C) 2020 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Conference Object
    Sustainable Water Management and Rehabilitation in the Mining Lakes, Ilgin-Konya, Turkey
    (Agro Arge Danismanlik San ve Tic As, 2016) Delibalta, M. S.; Uzal, N.; Lermi, A.; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Uzal, Natalia E.; 01. Abdullah Gül University; 02.03. İnşaat Mühendisliği; 02. Mühendislik Fakültesi
    The processes during the search, production and enrichment of mining operations naturally affects the air, soil, water resources in turn the natural environment and living organisms. In general, the environmental impact of coal opencast mining operations is much more significant than that of underground mining and mineral processing. After stripping of the material filling the holes in coal opencast production, with the rise of surface water and ground water level is composed of large or small ponds. Low pH (acidic characteristic) and high metal concentrations (Al, Ca, Mn, Fe, Cu, Zn, Pb) of these ponds, containing sulfide minerals and the waste materials, for the sustainability of natural resources is one of the biggest environmental problems. This paper is to investigate geochemical characteristics of the pond waters in the Ilgm Coal deposit area. Geochemical analyses were made by ICP-MS in waters taken from ponds in each three-month periods. Highest heavy metal contents 1839 ppb Mn and 9777 ppb Fe, the average pH values 6.49-7.81, turbidity (NTU) 0.1263.6, sulphate content 0.05-2.67 mg SO4/L, chemical oxygen demand 4-136 mg O-2/L, and electrical conductivity 285 mu S/cm4.68 mS/cm have been measured during the monitoring study of five different lignite opencast mine post-production lakes of the TKI GLI Ilgm. Analyses were performed in three-month periods. The results were evaluated within the framework of relevant laws and regulations.