Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Unal, Ahmet Emin"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 1
    Man-Hour Prediction for Complex Industrial Products
    (Institute of Electrical and Electronics Engineers Inc., 2023) Unal, Ahmet Emin; Boyar, Halit; Kuleli Pak, Burcu Kuleli; Cem Yildiz, Mehmet; Erten, Ali Erman; Güngör, Vehbi Çağrı
    Accurately predicting the cost is crucial for the success of complex industrial projects. There can be several sources contributing to the cost. Traditional methods for cost estimation may not provide the required accuracy and speed to ensure the success of the project. Recently, machine learning techniques have shown promising results in improving cost estimation in various industrial products. This study investigates the performance of gradient-boosting machine learning models and feature engineering techniques on a private dataset of metal sheet project man-hour costs. A comparison of distinct models is conducted, key aspects influencing cost are identified, and the implications of incorporating domain-specific knowledge, including its advantages and disadvantages, are assessed based on performance outcomes. Experimental results demonstrate that LightGBM and XGBoost outperform other models, and feature selection and synthetic data generation techniques improve the performance. Overall, this study highlights the potential of machine learning in metal sheet sampling projects and emphasizes the importance of feature engineering and domain expertise for better model performance. © 2024 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 6
    Generating Emergency Evacuation Route Directions Based on Crowd Simulations With Reinforcement Learning
    (Institute of Electrical and Electronics Engineers Inc., 2022) Unal, Ahmet Emin; Gezer, Cengiz; Kuleli Pak, Burcu Kuleli; Güngör, Vehbi Çağrı
    In an emergency, it is vital to evacuate individuals from the dangerous environments. Emergency evacuation plan-ning ensures that the evacuation is safe and optimal in terms of evacuation time for all of the people in evacuation. To this end, the computer-enabled evacuation simulation systems are used to generate optimal routes for the evacuees. In this paper, a dynamic emergency evacuation route generator has been proposed based on indoor plans of the building and the locations of the evacuees. To generate the optimal routes in real-time, a reinforcement learning algorithm (proximal policy optimization) is presented. Comparative performance results show that the proposed model is successful for evacuating the individuals from the building in different scenarios. © 2022 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 1
    PCB Component Recognition With Semi-Supervised Image Clustering
    (IEEE, 2021) Unal, Ahmet Emin; Tasdemir, Kasim; Bahcebasi, Akif
    Classification of surface mounted devices plays an important role on automated inspection systems of printed component board production. Limited number of publicly available datasets which the components are labeled and high intraclass variance in these datasets causes the supervised approches to be inefficient. In this study a deep learning method, enhanced with an unsupervised clustering system, which uses a small set of labeled data is proposed. The method compared with the current studies and the supervised systems. Most optimized setting reached high accuracy results by outrunning current classification methods.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback