Browsing by Author "Turan, Servet"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Boosting the Ceramics with In Situ MOF- Derived Nanocarbons(AMER CHEMICAL SOC, 2023) Duden, Enes Ibrahim; Bayrak, Kubra Gurcan; Balkan, Mert; Cakan, Niyaz; Demiroglu, Arsen; Ayas, Erhan; Caglar, Mujdat; Turan, Servet; Islamoglu, Timur; Farha, Omar K; Erkartal, Mustafa; Şen, Ünal; 0000-0002-9772-128X; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Erkartal, MustafaMetal-organic framework (MOF)-derived nano-carbons have emerged as promising materials for energy and environmental applications owing to their high surface area, structural and chemical tunability, and hierarchical porosity. Although various carbon-based materials such as graphene and carbon nanotubes have been extensively used as secondary sintering additives to develop advanced ceramics with improved mechanical, thermal, and electrical properties, the potential of MOF-derived nanocarbon-based materials has not been ex-plored. Here, we report the first use of MOF-derived nanocarbons as a reinforcement phase in ceramic composites. To this end, Al2O3 and zeolitic imidazolate framework (ZIF-8) are used as the ceramic matrix and nanocarbon source, respectively. The ceramic composites are produced by densifying Al2O3 and ZIF-8 powder mixtures using spark plasma sintering (SPS) at 1550 degrees C and uniaxial pressure of 50 MPa. The fracture toughness of the composite increases up to 67% in comparison to an alumina monolith as ZIF-derived nanocarbons form interlayers to assist the dissipation of energy during the crack propagation and inhibit grain growth. The room-temperature electrical conductivity of the sintered samples drastically increases with the in situ formed nanocarbon-based fillers, reaching as high as 1410 S/m for 10 wt % ZIF-8 content. These results constitute an excellent initial step toward boosting the mechanical and electrical properties of ceramic matrix composites with in situ MOF-derived nanocarbons.Article Enhancing the Properties of Yttria-Stabilized Zirconia Composites with Zeolitic Imidazolate Framework-Derived Nanocarbons(AMER CHEMICAL SOC, 2023) Cakan, Niyaz; Issa, Abduselam Abubeker; Alsalman, Hamza; Aliyev, Emin; Duden, Enes Ibrahim; Gurcan Bayrak, Kubra; Caglar, Mujdat; Turan, Servet; Erkartal, Mustafa; Sen, Unal; 0000-0002-9772-128X; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Erkartal, MustafaCeramic matrix composites (CMCs) reinforced with nanocarbon have attracted significant interest due to their potential to enhance mechanical, thermal, and electrical properties. Although the investigation of carbon-based materials such as graphene and carbon nanotubes as additives for advanced ceramics has been widespread, the utilization of metal-organic framework (MOF)-derived nanocarbons in CMCs remains largely unexplored. We extended our previous proof-of-concept investigations by demonstrating the effectiveness of a different type of MOF-derived carbon as a reinforcing phase in an alternative ceramic matrix. We employed spark plasma sintering (SPS) to consolidate yttria-stabilized zirconia (YSZ) and zeolitic imidazolate framework (ZIF-67) powder blends at 1300 degrees C and a uniaxial pressure of 50 MPa. YSZ serves as the ceramic matrix, whereas ZIF-67 serves as the nanocarbon source. The composite exhibits a highly significant improvement in fracture toughness with an increase of up to 13% compared to that of the YSZ monolith. The formation of ZIF-derived nanocarbon interlayers is responsible for the observed enhancement in ductility, which can be attributed to their ability to facilitate energy dissipation during crack propagation and inhibit grain growth. Furthermore, the room-temperature electrical conductivity of the sintered samples demonstrates a substantial improvement, primarily due to the in situ formation of nanocarbon-based fillers, reaching an impressive 27 S/m with 10 wt % ZIF-67 content. Based on the results, it can be inferred that the incorporation of in situ MOF-derived nanocarbons into CMCs leads to a substantial improvement in both the mechanical and electrical properties.