1. Home
  2. Browse by Author

Browsing by Author "Tomac, Mehmet N"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Internal jet interactions in a fluidic oscillator at low flow rate
    (SPRINGER, 2014) Tomac, Mehmet N; Gregory, James W.; 0000-0003-1373-4639; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Tomac, Mehmet N
    This study focuses on the internal jet interactions and the oscillation mechanism of the feedback-free fluidic oscillator at low flow rate, corresponding to a Reynolds number of 1,350 (based on exit nozzle width and average exit velocity). Particle image velocimetry (PIV) was used in this study with a refractive index-matched fluid to minimize reflections that would otherwise occur at the fluid-acrylic interface in the test setup. A simple microphone-tube sensor configuration generated a reference signal, with a phase-averaging method based on each quarter period for velocity time history reconstruction. PIV results revealed the existence of a vortex of fluctuating size, shape, and strength on each side of the oscillator; and two transient vortices that are formed in the dome region of the oscillator by each of the jets once per period. The dome vortices periodically bifurcate each of the jets and transfer some of the kinetic energy of that jet to the opposing jet. This kinetic energy transfer mechanism dictates the dominance of either jet at the exit, and this mechanism repeats itself to sustain the oscillations created by the fluidic oscillator. At this flow rate, the two jets form a continuous mutual collision, and the jets are never completely cut off from the exit. The oscillatory behavior at this flow rate is due to a complex combination of jet interactions and bifurcations, vortex-shear layer interactions, vortex-wall interactions, and saddle point formations.
  • Loading...
    Thumbnail Image
    Article
    Phase-Synchronized Fluidic Oscillator Pair
    (AMER INST AERONAUTICS ASTRONAUTICS, 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA, 2019) Tomac, Mehmet N; Gregory, James W.; 0000-0003-1373-4639; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü
    The relative phase of oscillating jets from a pair of fluidic oscillators was synchronized in this work. The means for this synchronization was mutual interaction through a shared feedback channel between the two oscillators. Flow visualization and hot-wire measurements indicated a strong correlation and phase synchronization between the two oscillators. A numerical analysis offered better understanding of the internal flow physics that led to the synchronization phenomenon. A portion of the output jet from one fluidic oscillator was redirected and crossed over into the adjacent oscillator, leading to momentum transfer between the two oscillators. A portion of this cross-oscillator flow was directed into the shared feedback channel and constituted the main feedback flow. In this process, one of the shared feedback channel outlets was blocked by a vortex, allowing only one oscillator to receive feedback flow. The primary mechanism for in-phase synchronization was the cross-oscillator flow, which was divided into phase-modulated momentum injection to the primary jet and modulated flow input to the shared channel feedback channel.