Browsing by Author "Sun, Lei"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Discovery of a C-S lyase inhibitor for the prevention of human body malodor formation: tannic acid inhibits the thioalcohol production in Staphylococcus hominis(SPRINGER NATURE LINK, 2025) Fidan, Ozkan; Karipcin, Ayse Doga; Kose, Ayse Hamide; Anaz, Ayse; Demirsoy, Beyza Nur; Arslansoy, Nuriye; Sun, Lei; Mujwar, Somdutt; 0000-0001-5312-4742; 0009-0005-7132-842X; 0009-0008-5514-8711; 0000-0003-4037-5475; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, Ozkan; Karipcin, Ayse Doga; Kose, Ayse Hamide; Anaz, Ayse; Demirsoy, Beyza Nur; Arslansoy, NuriyeHuman body odor is a result of the bacterial biotransformation of odorless precursor molecules secreted by the underarm sweat glands. In the human axilla, Staphylococcus hominis is the predominant bacterial species responsible for the biotransformation process of the odorless precursor molecule into the malodorous 3M3SH by two enzymes, a dipeptidase and a specific C-S lyase. The current solutions for malodor, such as deodorants and antiperspirants are known to block the apocrine glands or disrupt the skin microbiota. Additionally, these chemicals endanger both the environment and human health, and their long-term use can influence the function of sweat glands. Therefore, there is a need for the development of alternative, environmentally friendly, and natural solutions for the prevention of human body malodor. In this study, a library of secondary metabolites from various plants was screened to inhibit the C-S lyase, which metabolizes the odorless precursor sweat molecules, through molecular docking and molecular dynamics (MD) simulation. In silico studies revealed that tannic acid had the strongest affinity towards C-S lyase and was stably maintained in the binding pocket of the enzyme during 100-ns MD simulation. We found in the in vitro biotransformation assays that 1 mM tannic acid not only exhibited a significant reduction in malodor formation but also had quite low growth inhibition in S. hominis, indicating the minimum inhibitory effect of tannic acid on the skin microflora. This study paved the way for the development of a promising natural C-S lyase inhibitor to eliminate human body odor and can be used as a natural deodorizing molecule after further in vivo analysis.Article In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19(WILEY111 RIVER ST, HOBOKEN 07030-5774, NJ, 2022) Mujwar, Somdutt; Sun, Lei; Fidan, Ozkan; 0000-0003-4037-5475; 0000-0002-5024-4164; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, ÖzkanThe current COVID-19 pandemic is severely threatening public healthcare systems around the globe. Some supporting therapies such as remdesivir, favipiravir, and ivermectin are still under the process of a clinical trial, it is thus urgent to find alternative treatment and prevention options for SARS-CoV-2. In this regard, although many natural products have been tested and/or suggested for the treatment and prophylaxis of COVID-19, carotenoids as an important class of natural products were underexplored. The dietary supplementation of some carotenoids was already suggested to be potentially effective in the treatment of COVID-19 due to their strong antioxidant properties. In this study, we performed an in silico screening of common food-derived carotenoids against druggable target proteins of SARS-CoV-2 including main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase. Molecular docking results revealed that some of the carotenoids had low binding energies toward multiple receptors. Particularly, crocin had the strongest binding affinity (-10.5 kcal/mol) toward the replication complex of SARS-CoV-2 and indeed possessed quite low binding energy scores for other targets as well. The stability of crocin in the corresponding receptors was confirmed by molecular dynamics simulations. Our study, therefore, suggests that carotenoids, especially crocin, can be considered an effective alternative therapeutics and a dietary supplement candidate for the prophylaxis and treatment of SARS-CoV-2. Practical applications In this study, food-derived carotenoids as dietary supplements have the potential to be used for the prophylaxis and/or treatment of SARS-CoV-2. Using in silico techniques, we aimed at discovering food-derived carotenoids with inhibitory effects against multiple druggable sites of SARS-CoV-2. Molecular docking experiments against main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase resulted in a few carotenoids with multitarget inhibitory effects. Particularly, crocin as one of the main components of saffron exhibited strong binding affinities to the multiple drug targets including main protease, helicase, replication complex, mutant spike protein of lineage B.1.351, and ADP-ribose phosphatase. The stability of the crocin complexed with these drug targets was further confirmed through molecular dynamics simulations. Overall, our study provides the preliminary data for the potential use of food-derived carotenoids, particularly crocin, as dietary supplements in the prevention and treatment of COVID-19.