Browsing by Author "Sukharevsky, Ilya O."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
conferenceobject.listelement.badge Integral-Equation Study of Ray Effects and Natural-Mode Resonances in a 2-D Dielectric Prism(IEEE, 2015) Sukharevsky, Ilya O.; Altintas, Ayhan; 0000-0002-3501-4010; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Altintas, AyhanWe analyze the interplay of two different types of electromagnetic behavior demonstrated by a 2-D dielectric prism: Geometrical Optics and resonance. As it is shown, the first is responsible, for instance, for enhanced reflection from an isosceles 90-degree prism of arbitrary epsilon and size, if illuminated from the base. The second is responsible for the peaks in the total scattering and absorption cross-sections (RCS) at the natural-mode frequencies. The numerical model is based on Nystrom discretization of Muller-type integral equations that provides guarantied convergence.Article Manipulation of Backscattering From a Dielectric Cylinder of Triangular Cross-Section Using the Interplay of GO-Like Ray Effects and Resonances(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, 2015) Sukharevsky, Ilya O.; Nosich, Alexander I.; Altintas, Ayhan; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;A triangular dielectric cylinder (dielectric prism) of the size, in cross-section, comparable to or moderately larger than the wavelength is a scatterer, which blends together two different types of electromagnetic behavior: geometrical optics (GO) and resonance. As shown in this paper, the first is responsible, for instance, for enhanced reflection from an isosceles 90 degrees prism, if illuminated from the base. The second is responsible for the peaks in the total scattering and absorption cross-sections (ACSs) at the natural-mode frequencies. The numerical analysis is performed by solving the well-conditioned Muller-type boundary integral equation (IE) discretized using an algorithm with controlled accuracy.Article Validation of Higher-Order Approximations and Boundary Conditions for Lossy Conducting Bodies(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, 2014) Sukharevsky, Ilya O.; Altintas, Ayhan; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;The problem of high-frequency diffraction by a smooth lossy body with high conductivity is considered. In addition to the geometrical optics approximation, additional asymptotic terms are derived to take into account the curvature of the boundary and material properties. Since these higher-order terms are derived by taking into account exact boundary conditions, it is easy to learn about the limitations of impedance conditions and to determine more accurate approximate conditions. The obtained higher-order boundary conditions and their limitations are numerically validated by solving Muller's second-kind integral equations.