Browsing by Author "Sonmezoglu, Savas"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Cesium-lead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency(ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2019) Akin, Seckin; Altintas, Yemliha; Mutlugun, Evren; Sonmezoglu, Savas; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği BölümüDespite the excellent photovoltaic performances of perovskite solar cells (PSCs), the instability of PSCs under severe environment (e.g. humidity, light-induced, etc.) limits further commercialization of such devices. Therefore, in recent years, research on the long-term stability improvement of PSCs has been actively carried out in perovskite field. To address these issues, we demonstrated the incorporation of ultra-thin interfacial layer of inorganic CsPbBr1.85I1.15 perovskite quantum-dots (PQDs) that can effectively passivate defects at or near to the perovskite/hole transport material (HTM) interface, significantly suppressing interfacial recombination. This passivation layer increased the open circuit voltage (V-oc) of triple-cation perovskite cells by as much as 50 mV, with champion cells achieving V-oc similar to 1.14 V. As a result, we obtained hysteresis-free cells with the efficiency beyond 21%. More importantly, devices based on such architecture are capable of resisting humidity and light-induced. Remarkably, the device employing CsPbBr1.85I1.15 demonstrated a superb shelf-stability aganist to humidity under ambient conditions (R.H. >= 40%), retaining nearly 91% of initial efficiency after 30 days, while the efficiency of control device rapidly dropped to 45% from its initial value under the same conditions. Besides benefiting from the high moisture resistivity as well as supressed ion migration, PSC5 based on PQDs showed better operational stability (retaining 94% of their initial performance) than that of the PQDs-free one under continuous light irradiation over 400 h. In addition, a faster PL decay time of 4.66 ns was attained for perovskite/PQDs structure (5.77 ns for only PQDs structure) due to the favorable energy transfer at the interface, indicating a Forster resonance energy transfer (FRET) mechanism. This work indicates that inorganic PQDs are important materials as interlayer in PSC5 to supremely enhance the device stability and efficiency.Article A dopant-free 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT)-based hole transporting layer for highly stable perovskite solar cells with efficiency over 22%(ROYAL SOC CHEMISTRY, 2022) Kaya, Ismail Cihan; Ozdemir, Resul; Usta, Hakan; Sonmezoglu, Savas; 0000-0002-7957-110X; 0000-0002-0618-1979; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Özdemir, Resul; Usta, HakanIn this study, for the first time, n-i-p PSCs were fabricated using dopant-free 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) as the solution-processed hole transporting layer (HTL). The power conversion efficiency (PCE) of the optimized device with the C8-BTBT film that favored edge-on molecular alignment was 22.45% with negligible hysteresis. A thinner dopant-free C8-BTBT HTL effectively protected the perovskite layer from moisture resulting in better shelf-life stability for un-encapsulated PSCs, which maintained >80% of its initial PCE (after a period of 120 days) at a relative humidity level of 40-45%. In addition, the C8-BTBT-based PSCs kept their high performance with no obvious PCE loss at 60 degrees C for 20 days in the ambient atmosphere and retained 82% of their initial PCE at 85 degrees C for 10 days. Overall, our findings revealed that a thin solution-processed C8-BTBT HTL plays a critical role not only in hole extraction and transport but also in greatly improving the ambient and thermal stability of n-i-p PSCs.conferenceobject.listelement.badge Improving performance and stability in quantum dot-sensitized solar cell through single layer graphene/Cu2S nanocomposite counter electrode(PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND, 2020) Akman, Erdi; Altintas, Yemliha; Gulen, Mahir; Yilmaz, Mucahit; Mutlugun, Evren; Sonmezoglu, Savas; 0000-0002-6011-3504; 0000-0002-3387-5095; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği BölümüIn this work, we presented an effective nanocomposite to modify the Cu2S film by employing single layer graphene (SLG) frameworks via chemical vapor deposition, and utilized this nanocomposite as counter electrode (CE) with CdSe/ZnS core/shell quantum dots for highly stable and efficient quantum dot-sensitized solar cell (QDSSC). Furthermore, Cu2S film is directly synthesized on SLG framework by electrodeposition method. Using this nanocomposite as CE, we have achieved the high efficiency as high as 3.93% with fill factor of 0.63, which is higher than those with bare Cu2S CE (3.40% and 0.57). This remarkable performance is attributed to the surface area enhancement by creating nanoflower-shape, the reduction of charge transfer resistance, improvement of catalytic stability, and the surface smoothness as well as good adhesion. More importantly, no visible color change and detachment from surface for the Cu2S@SLG nanocomposite was observed, demonstrating that the SLG framework is critical role in shielding the Cu2S structure from sulphur ions into electrolyte, and increasing the adhesion of the Cu2S structure on surface, thus preventing its degradation. Consequently, the Cu2S@SLG nanocomposite can be utilized as an effective agent to boost up the performance of QDSSCs. (c) 2019 Elsevier Ltd. All rights reserved.