Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Schoen, J. Christian"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 4
    A Phenomenological Hydrogen Induced Edge Dislocation Mobility Law for Bcc Fe Obtained by Molecular Dynamics
    (Pergamon-Elsevier Science Ltd, 2024) Baltacioglu, Mehmet Furkan; Kapci, Mehmet Fazil; Schoen, J. Christian; Marian, Jaime; Bal, Burak
    Investigating the interaction between hydrogen and dislocations is essential for understanding the origin of hydrogen-related fractures, specifically hydrogen embrittlement (HE). This study investigates the effect of hydrogen on the mobility of 1/2<111>{110} and 1/2<111>{112} edge dislocations in body-centered cubic (BCC) iron (Fe). Specifically, molecular dynamics (MD) simulations are conducted at various stress levels and temperatures for hydrogen-free and hydrogen-containing lattices. The results show that hydrogen significantly reduces dislocation velocities due to the pinning effect. Based on the results of MD simulations, phenomenological mobility laws for both types of dislocations as a function of stress, temperature and hydrogen concentration are proposed. Current findings provide a comprehensive model for predicting dislocation behavior in hydrogencontaining BCC lattices, thus enhancing the understanding of HE. Additionally, the mobility laws can be utilized in dislocation dynamics simulations to investigate hydrogen-dislocation interactions on a larger scale, aiding in the design of HE-resilient materials for industrial applications.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 38
    Citation - Scopus: 41
    The Role of Hydrogen in the Edge Dislocation Mobility and Grain Boundary-Dislocation Interaction in Α-Fe
    (Pergamon-Elsevier Science Ltd, 2021) Kapci, Mehmet Fazil; Schoen, J. Christian; Bal, Burak
    The atomistic mechanisms of dislocation mobility depending on the presence of hydrogen were investigated for two edge dislocation systems that are active in the plasticity of alpha-Fe, specifically 1/2<111>{110} and 1/2<111>{112}. In particular, the glide of the dislocation pile-ups through a single crystal, as well as transmission of the pile-ups across the grain boundary were evaluated in bcc iron crystals that contain hydrogen concentrations in different amounts. Additionally, the uniaxial tensile response under a constant strain rate was analyzed for the aforementioned structures. The results reveal that the presence of hydrogen decreases the velocity of the dislocations -in contrast to the commonly invoked HELP (Hydrogen-enhanced localized plasticity) mechanism-, although some localization was observed near the grain boundary where dislocations were pinned by elastic stress fields. In the presence of pre-exisiting dislocations, hydrogen-induced hardening was observed as a consequence of the restriction of the dislocation mobility under uniaxial tension. Furthermore, it was observed that hydrogen accumulation in the grain boundary suppresses the formation of new grains that leads to a hardening response in the stress-strain behaviour which can initiate brittle fracture points. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback