Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Savas, Muzeyyen"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Colloidal Photodetectors Based on Engineered Multishelled InP Based Quantum Dots
    (IOP Publishing Ltd, 2026) Akrema; Erol, Erdinc; Savas, Muzeyyen; Yazici, Ahmet Faruk; Erdem, Talha; Mutlugun, Evren
    In this work, we present a straightforward and cost-effective approach to synthesize multi-shell InP/ZnSe/ZnSeS/ZnS quantum dots (QDs) that show promising potential for use in photodetectors. By carefully layering ZnSe, ZnSeS, and ZnS shells around an InP core, we were able to enhance the stability and optical performance of the QDs, achieving a narrow emission peak of 45 nm and a high photoluminescence quantum yield of 55%. These QDs were then integrated into simple photodetector devices, which possessed impressive sensitivity and detection capabilities. Specifically, our devices achieved a peak responsivity of 0.54 A W-1 and a detectivity of 2.22 x 1011 Jones at 400 nm with a 5 V bias. This study highlights the potential of InP-based QDs as a safer and more sustainable alternative to traditional QDs that contain toxic heavy metals, offering a viable path forward for developing high-performance optoelectronic devices. Our findings suggest that these InP/ZnSe/ZnSeS/ZnS QDs could be a key material for the next generation of high-performance optoelectronic devices, especially in applications that require highly sensitive and stable photodetectors.
  • Loading...
    Thumbnail Image
    Conference Object
    Simple, Sustainable Fabrication of Fully Solution-Processed, Transparent, Metal-Semiconductor Photodetectors Using a Surgical Blade as an Alternative to Conventional Tools
    (SPIE - The International Society for Optics and Photonics, 2022) Savas, Muzeyyen; Yazici, Ahmet Faruk; Arslan, Aysenur; Mutlugun, Evren; Erdem, Talha
    Fabrication of optoelectronic devices relies on the expensive, energy-consuming conventional tools such as chemical vapor deposition, lithography, and metal evaporation. Furthermore, the films used in these devices are usually deposited at elevated temperatures and under vacuum that impose further restrictions to the device fabrication. Developing an alternative technology would contribute to the efforts on achieving a more sustainable optoelectronics technology. Keeping this focus in our focus, here we present a simple technique to fabricate visible photodetectors. These fully solution-processed and transparent metal-semiconductor-metal photodetectors employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NWs on a glass substrate followed by the coating of ZnO nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 Omega/square as measured by the four-probe method. Optical spectroscopy revealed that the transmittance of the Ag NW-ZnO films was 84% at 450 nm while transmittance of the ITO films was 90% at same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap. The scanning electron microscope images indicate that a gap of similar to 30 mm is opened forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell quantum dots (QDs) on to this gap to form a metal-semiconductor-metal photodetector. These visible QD- based photodetectors exhibited responsivities and detectivities up to 8.5 mA/W and 0.95x10(9) Jones, respectively. These proof-of-concept photodetectors show that the environmentally friendly, low- cost, and energy-saving technique presented here can be an alternative to conventional, more expensive, and energy-hungry techniques while fabricating light-harvesting devices.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 1
    Toward Sustainable Optoelectronics: Solution-Processed Quantum Dot Photodetector Fabrication Using a Surgical Blade
    (SPIE - Society of Photo-Optical Instrumentation Engineers, 2023) Savas, Muzeyyen; Yazici, Ahmet Faruk; Arslan, Aysenur; Mutluguen, Evren; Erdem, Talha
    Fabrication of optoelectronic devices relies on expensive, energy-consuming conventional tools including chemical vapor deposition, lithography, and metal evaporation. Furthermore, the films used in these devices are usually deposited at elevated temperatures (> 300 degrees C) and under high vacuum, which necessitate further restrictions on the device fabrication. Developing an alternative technology would contribute to the efforts on achieving a sustainable optoelectronics technology. Keeping this in our focus, here we present a simple technique to fabricate visible photodetectors (PDs). These fully solution-processed and transparent metal-semiconductor-metal (MSM) PDs employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin-oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NWs on a glass substrate followed by the coating of zinc oxide nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 omega/? as measured by the four-probe method. Optical spectroscopy revealed that the transmittance of the Ag NW-ZnO films was 84% at 450 nm while the transmittance of the ITO films was 90% at the same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap. The scanning electron microscope images indicate that a gap of similar to 30 mu m is opened forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell quantum dots (QDs) onto this gap to form a MSM PD. These visible QD-based PDs exhibited responsivities and detectivities up to 8.5 mA/W and 0.95 x 109 Jones, respectively at a bias voltage of 5 V and wavelength of 650 nm. These proof-of-concept PDs show that the environmentally friendly, low-cost, and energy-saving technique presented here can be an alternative to conventional, high-cost, and energy-hungry techniques while fabricating photoconductive devices.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 15
    Citation - Scopus: 14
    Effects of Silver Nanowires and Their Surface Modification on Electromagnetic Interference, Transport and Mechanical Properties of an Aerospace Grade Epoxy
    (Sage Publications Ltd, 2024) Ozkutlu Demirel, Merve; Ozturkmen, Mahide B.; Savas, Muzeyyen; Mutlugun, Evren; Erdem, Talha; Oz, Yahya
    The aerospace industry has progressively grown its use of composites. Electrically conductive nanocomposites are among important modern materials for this sector. We report on a bulk composite containing silver nanowires (AgNW) and an aerospace grade epoxy for use in carbon fiber reinforced polymers (CFRPs). AgNWs' surfaces were also modified to enhance their ability to be dispersed in epoxy. Composites were obtained by use of three-roll milling which is of major interest for industrial applications, especially for the aerospace sector, since the process is scalable and works for aerospace grade resins with high curing temperatures. Our main objective is to improve the electromagnetic interference (EMI) shielding performance of CFRPs via improving the properties of the resin material. The addition of AgNWs did not considerably alter the flexural strength of the epoxy, however the composite with surface-modified AgNWs has a 46 % higher flexural strength. Adding AgNWs over a low threshold concentration of 0.05 wt% significantly enhanced the electrical conductivity. Conductivities above the percolation threshold lie around 102 S/m. At a concentration of 5 wt% AgNW, the EMI shielding efficiency (SE) of epoxy increased from 3.49 to 12.31 dB. Moreover, the thermal stability of the epoxy was unaffected by AgNWs. As a result, it was discovered that (surface modified) AgNWs improved the (multifunctional) capabilities of the aerospace grade epoxy resin which might be used in CFRPs to further enhance properties of composites parts, demonstrating suitability of AgNWs' as a reinforcement material in aerospace applications.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback