Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Savaş, Müzeyyen"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Master Thesis
    Işık Emici Optoelektronik Cihazların Üretimi ve Yeni Uygulamaları
    (Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Savaş, Müzeyyen; Erdem, Talha
    Fabrication of optoelectronic devices relies on expensive, energy-consuming conventional tools including chemical vapor deposition, lithography, and metal evaporation. Developing an alternative technology would contribute to the efforts on achieving a sustainable optoelectronics technology. Keeping this in our focus, here we present a simple technique to fabricate visible photodetectors. These fully solution-processed and transparent metal-semiconductor-metal photodetectors employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin-oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NW on a glass substrate followed by the coating of ZnO nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 Ω/□. The transmittance of the Ag NW-ZnO films was 84% at 450 nm while the transmittance of the ITO films was 90% at the same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap which is ~30 µm forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell colloidal quantum dots (CQDs) onto this gap. These visible CQD-based photodetectors exhibited responsivities and detectivities up to 8.5 mA/W and 0.95x109 Jones, respectively. These proof-of-concept photodetectors show that the environmentally friendly, low-cost, and energy-saving technique presented here can be an alternative to conventional, high-cost, and energy-hungry techniques while fabricating light-harvesting devices.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback