Browsing by Author "Sahmetlioglu, Ertugrul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 14Citation - Scopus: 16Investigation of the Performance and Properties of ZnO/GO Double-Layer Supercapacitor(Pergamon-Elsevier Science Ltd, 2024) Buyukkurkcu, Handan; Durmus, Ali; Colak, Hakan; Kurban, Rifat; Sahmetlioglu, Ertugrul; Karakose, ErcanComposite electrode material was formed by mixing reduced graphene oxide (rGO) and zinc oxide (ZnO) compound, using the Hummers and green synthesis methods, respectively. Of rGO powder, 10 g was mixed with 10%, 20% and 30% ZnO, and composite electrodes were obtained by using 10% binder. The energy storage performance and structural characteristics of the supercapacitor were evaluated by analyzing the capacitance values of the synthesized electrodes. The structural characterization of ZnO/rGO composites was performed using X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties of the ZnO/GO electrodes were analyzed by cyclic voltammetry, electrochemical impedance and galvanostatic charge -discharge tests. The specific capacitance value of electrodes increased as zinc content increased in the ZnO/ rGO composite material used to produce electrodes. The maximum specific capacitance values were measured at 5 mV/s scanning rate as 194.23 (rGO), 366.81 (10% ZnO), 383.18 (20% ZnO) and 410.48 F/g (30% ZnO). In conclusion, the use of composite material formed by the combination of ZnO nanoparticles obtained by green synthesis method from orange peel and graphene oxide increased the electrochemical efficiency of the supercapacitor.Article Citation - WoS: 31Citation - Scopus: 31Flexible Electrodes Composed of Flower-Like MoS2 and MXene for Supercapacitor Applications(Pergamon-Elsevier Science Ltd, 2024) Hayat, Hilal Pecenek; Dokan, Fatma Kilic; Onses, M. Serdar; Yilmaz, Erkan; Duran, Ali; Sahmetlioglu, ErtugrulFlexible supercapacitors with high charge storage ability are needed for emerging applications in wearable electronics. Here, we introduce a novel flexible supercapacitor electrode by incorporating flower-like MoS2 into MXene via a hydrothermal technique. We mostly focused on the structural design for electrode configuration to enhance the charge storage mechanism. Three different electrodes composed of MoS2, MXene, and MoS2@MXene were fabricated via a versatile drop-casting and drying method. There are unique advantages of incorporating MoS2 with MXene such as the fast electron transfer, hydrophilicity of the interface, and structural stability. The MoS2@MXene // MXene flexible asymmetric supercapacitor device offered a high energy density of 1.21 W h /kg and a power density of 54.45 W /kg. Moreover, the asymmetric device exhibits nearly identical electrochemical behavior following 100 bending cycles at different angles. The high electrochemical activity of MoS2 and MXene and good interaction are ascribed to the superior electrochemical performance of the composite material. Furthermore, this research could guide the development of flexible, high-performance, and low-cost electrodes which will be useful in wearable electronics.

