Browsing by Author "Russell, Kevin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Configurable, Hierarchical, Model-based, Scheduling Control with photovoltaic generators in power distribution circuits(PERGAMON-ELSEVIER SCIENCE LTD, 2015) Jung, Jaesung; Onen, Ahmet; Russell, Kevin; Broadwater, Robert P.; Steffel, Steve; Dinkel, Alex; 0000-0001-7086-5112; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Onen, AhmetExisting distribution systems and their associated controls have been around for decades. Most distribution circuits have capacity to accommodate some level of PV generation, but the question is how much can they handle without creating problems. This paper proposes a Configurable, Hierarchical, Modelbased, Scheduling Control (CHMSC) of automated utility control devices and photovoltaic (PV) generators. In the study here the automated control devices are assumed to be owned by the utility and the PV generators and PV generator controls by another party. The CHMSC, which exists in a hierarchical control architecture that is failure tolerant, strives to maintain the voltage level that existed before introducing the PV into the circuit while minimizing the circuit loss and reducing the motion of the automated control devices. This is accomplished using prioritized objectives. The CHMSC sends control signals to the local controllers of the automated control devices and PV controllers. To evaluate the performance of the CHMSC, increasing PV levels of adoption are analyzed in a model of an actual circuit that has significant existing PV penetration and automated voltage control devices. The CHMSC control performance is compared with that of existing, local control. Simulation results presented demonstrate that the CHMSC algorithm results in better voltage control, lower losses, and reduced automated control device motion, especially as the penetration level of PV increases.Article Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits(ELSEVIER, 2015) Jung, Jaesung; Onen, Ahmet; Russell, Kevin; Broadwater, Robert P.; 0000-0001-7086-5112; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Onen, AhmetBoth steady-state and quasi steady-state impact studies in high Photovoltaic (PV) penetration distribution circuits are presented. The steady-state analysis evaluates impacts on the distribution circuit by comparing conditions before and after extreme changes in PV generation at three extreme circuit conditions, maximum load, maximum PV generation, and when the difference between the PV generation and the circuit load is a maximum. The quasi steady-state study consists of a series of steady-state impact studies performed at evenly spaced time points for evaluating the spectrum of impacts between the extreme impacts. Results addressing the impacts of cloud cover and various power factor control strategies are presented. PV penetration levels are limited and depend upon PV generation control strategies. The steady state and quasi steady-state impact studies provide information that is helpful in evaluating the effect of PV generation on distribution circuits, including circuit problems that result from the PV generation.