1. Home
  2. Browse by Author

Browsing by Author "Ozdil, Ahmet"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Automatic body part and pose detection in medical infrared thermal images
    (TAYLOR & FRANCIS LTD2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND, 2021) Ozdil, Ahmet; Yilmaz, Bulent; 0000-0002-6651-1968; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Ozdil, Ahmet; Yilmaz, Bulent
    Automatisation and standardisation of the diagnosis process in medical infrared thermal imaging (MITI) is crucial because the number of medical experts in this area is highly limited.The current studies generally need manual intervention. One of the manual operations requires physician's determination of the body part and orientation. In this study automatic pose and body part detection on medical thermal images is investigated. The database (957 thermal images - 59 patients) was divided into four classes upper-lower body parts with back-front views. First, histogram equalization (HE) method was applied on the pixels only within the body determined using Otsu'sthresholding approach. Secondly, DarkNet-19 architecture was used for feature extraction, and principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-SNE) approaches for feature selection. Finally, the performances of various machine learning based classification methods were examined. Upper vs. lower body parts and back vs. front of upper body were classified with 100% accuracy, and back vs. front classification of lower body part success rate was 93.38%. This approach will improve the automatisation process of thermal images to group them for comparing one image with the others and to perform queries on the labeled images in a more user-friendly manner.
  • Loading...
    Thumbnail Image
    Article
    Medical infrared thermal image based fatty liver classification using machine and deep learning
    (TAYLOR & FRANCIS LTD, 2023) Ozdil, Ahmet; Yilmaz, Bulent; 0000-0003-2954-1217; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Yılmaz, Bülent
    Non-alcoholic fatty liver disease (NAFLD) causes accumulation of excess fat in the liver affecting people who drink little to no alcohol. Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease (inflammation in the liver), may progress to cirrhosis and liver failure. Liver function tests, ultrasound (US) and magnetic resonance imaging (MRI) are used to help diagnose and monitor liver disease or damage. In this study, the feasibility of medical infrared thermal imaging (MITI) in automatic detection of NAFLD was investigated, and 167 MITI images (44 positive) from 32 patients (7 positive) were evaluated using image processing and classification methods. Convolutional neural network (CNN) architectures and texture analysis methods were used in the feature selection phase. After feature selection and binary classification, the highest values from different setups for recall, f-score, specificity, accuracy, and area-under-curve (AUC) were 1.00, 1.00, 0.83, 1.0, 0.94, and 0.92, respectively. The highest values were achieved by CNN based methods on different datasets, however, texture analysis method performed lower. Here, it is shown that some of the CNN architectures have high potential on extracting features from thermal images. Finally, machine and deep learning approaches can be combined in detecting NAFLD using infrared thermal images.