Browsing by Author "Ow-Yang, Cleva W."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 28Citation - Scopus: 25Quantum Dot and Electron Acceptor Nano-Heterojunction for Photo-Induced Capacitive Charge-Transfer(Nature Portfolio, 2021) Karatum, Onuralp; Eren, Guncem Ozgun; Melikov, Rustamzhon; Onal, Asim; Ow-Yang, Cleva W.; Sahin, Mehmet; Nizamoglu, SedatCapacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy-metal content in such architectures hinders their safe use. In this study, we demonstrate heavy-metal-free quantum dot-based nano-heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano-heterojunctions using type-II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron-hole wavefunction overlap of 0.52 due to type-II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor-acceptor ratio. This study paves the way toward safe and efficient nanoengineered quantum dot-based next-generation photostimulation devices.Article Citation - WoS: 16Citation - Scopus: 17Colloidal Aluminum Antimonide Quantum Dots(Amer Chemical Soc, 2019) Jalali, Houman Bahmani; Sadeghi, Sadra; Sahin, Mehmet; Ozturk, Hande; Ow-Yang, Cleva W.; Nizamoglu, SedatAlSb is a less studied member of the III-V semiconductor family, and herein, we report the colloidal synthesis of AlSb quantum dots (QDs) for the first time. Different sizes of colloidal AlSb QDs (5 to 9 nm) were produced by the controlled reaction of AlCl3 and Sb[N(Si(Me)(3))(2)](3) in the presence of superhydride. These colloidal AlSb quantum dots showed excitonic transitions in the UV-A region and a tunable band edge emission (quantum yield of up to 18%) in the blue spectral range. Among all III-V quantum dots, these quantum dots show the brightest core emission in the blue spectral region.

