Browsing by Author "Oveisi, Ali Reza"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Mesoscale Morphologies of Nafion-Based Blend Membranes by Dissipative Particle Dynamics(MDPIST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2021) Sen, Unal; Ozdemir, Mehmet; Erkartal, Mustafa; Kaya, Alaattin Metin; Manda, Abdullah A.; Oveisi, Ali Reza; Ali Aboudzadeh, M.; Tokumasu, Takashi; 0000-0002-1940-8749; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Kaya, Alaattin MetinPolymer electrolyte membrane (PEM) composed of polymer or polymer blend is a vital element in PEM fuel cell that allows proton transport and serves as a barrier between fuel and oxygen. Understanding the microscopic phase behavior in polymer blends is very crucial to design alternative cost-effective proton-conducting materials. In this study, the mesoscale morphologies of Nafion/poly(1-vinyl-1,2,4-triazole) (Nafion-PVTri) and Nafion/poly(vinyl phosphonic acid) (Nafion-PVPA) blend membranes were studied by dissipative particle dynamics (DPD) simulation technique. Simulation results indicate that both blend membranes can form a phase-separated microstructure due to the different hydrophobic and hydrophilic character of different polymer chains and different segments in the same polymer chain. There is a strong, attractive interaction between the phosphonic acid and sulfonic acid groups and a very strong repulsive interaction between the fluorinated and phosphonic acid groups in the Nafion-PVPA blend membrane. By increasing the PVPA content in the blend membrane, the PVPA clusters' size gradually increases and forms a continuous phase. On the other hand, repulsive interaction between fluorinated and triazole units in the Nafion-PVTri blend is not very strong compared to the Nafion-PVPA blend, which results in different phase behavior in Nafion-PVTri blend membrane. This relatively lower repulsive interaction causes Nafion-PVTri blend membrane to have non-continuous phases regardless of the composition.Article Poly(lauryl methacrylate)-Grafted Amino-Functionalized Zirconium-Terephthalate Metal-Organic Framework: Efficient Adsorbent for Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples(AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2020) Tabatabaii, Maryam; Khajeh, Mostafa; Oveisi, Ali Reza; Erkartal, Mustafa; Sen, Unal; 0000-0002-0075-211X; 0000-0002-7097-2898; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği BölümüIn this study, a novel porous hybrid material, poly(lauryl methacrylate) polymer-grafted UiO-66-NH2 (UiO = University of Oslo), was synthesized for efficient extraction of polycyclic aromatic hydrocarbons (PAHs) from aqueous samples. The polymer end-tethered covalently to the MOF's surface was synthesized by surface-initiated atom transfer radical polymerization, revealing a distinct type of morphology. The adsorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N-2 adsorption-desorption analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The analyses were carried out by gas chromatography-mass spectrometry. Parameters including the type and volume of the eluent, the amount of the adsorbent, and adsorption and desorption times were investigated and optimized. Under optimal conditions, the limit of detection, intraday precision, and interday precision were in the range of 3-8 ng L-1, 1.4-3.1, and 4.1-6.5%, respectively. The procedure was used for analysis of PAHs from natural water samples.