1. Home
  2. Browse by Author

Browsing by Author "Ngadi, Md Asri"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    CBI4.0: A cross-layer approach for big data gathering for active monitoring and maintenance in the manufacturing industry 4.0
    (ELSEVIERRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2021) Faheem, Muhammad; Butt, Rizwan Aslam; Ali, Rashid; Raza, Basit; Ngadi, Md Asri; Gungor, Vehbi Cagri; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Faheem, Muhammad; Gungor, Vehbi Cagri
    Industry 4.0 (I4.0) defines a new paradigm to produce high-quality products at the low cost by reacting quickly and effectively to changing demands in the highly volatile global markets. In Industry 4.0, the adoption of Internet of Things (IoT)-enabled Wireless Sensors (WSs) in the manufacturing processes, such as equipment, machining, assembly, material handling, inspection, etc., generates a huge volume of data known as Industrial Big Data (IBD). However, the reliable and efficient gathering and transmission of this big data from the source sensors to the floor inspection system for the real-time monitoring of unexpected changes in the production and quality control processes is the biggest challenge for Industrial Wireless Sensor Networks (IWSNs). This is because of the harsh nature of the indoor industrial environment that causes high noise, signal fading, multipath effects, heat and electromagnetic interference, which reduces the transmission quality and trigger errors in the IWSNs. Therefore, this paper proposes a novel cross-layer data gathering approach called CBI4.0 for active monitoring and control of manufacturing processes in the Industry 4.0. The key aim of the proposed CBI4.0 scheme is to exploit the multi-channel and multi-radio architecture of the sensor network to guarantee quality of service (QoS) requirements, such as higher data rates, throughput, and low packet loss, corrupted packets, and latency by dynamically switching between different frequency bands in the Multichannel Wireless Sensor Networks (MWSNs). By performing several simulation experiments through EstiNet 9.0 simulator, the performance of the proposed CBI4.0 scheme is compared against existing studies in the automobile Industry 4.0. The experimental outcomes show that the proposed scheme outperforms existing schemes and is suitable for effective control and monitoring of various events in the automobile Industry 4.0.
  • Loading...
    Thumbnail Image
    Article
    QoSRP: A Cross-Layer QoS Channel-Aware Routing Protocol for the Internet of Underwater Acoustic Sensor Networks
    (MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2019) Faheem, Muhammad; Butt, Rizwan Aslam; Raza, Basit; Alquhayz, Hani; Ashraf, Muhammad Waqar; Shah, Syed Bilal; Ngadi, Md Asri; Gungor, Vehbi Cagri; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü;
    Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs.