1. Home
  2. Browse by Author

Browsing by Author "Melikov, Rustamzhon"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs
    (AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036, 2021) Eren, Guncem Ozgun; Sadeghi, Sadra; Jalali, Houman Bahmani; Ritter, Maximilian; Han, Mertcan; Baylam, Isinsu; Melikov, Rustamzhon; Onal, Asim; Oz, Fatma; Sahin, Mehmet; Ow-Yang, Cleva W.; Sennaroglu, Alphan; Lechner, Rainer T.; Nizamoglu, Sedat; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sahin, Mehmet
    It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based typeII QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of similar to 91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle Xray scattering shows that spherical InP core and InP/ZnO core/ shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.
  • Loading...
    Thumbnail Image
    Article
    Cation exchange mediated synthesis of bright Au@ZnTe core-shell nanocrystals
    (IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND, 08.01.2021) Sadeghi, Sadra; Melikov, Rustamzhon; Sahin, Mehmet; Nizamoglu, Sedat; 0000-0002-8569-1626; 0000-0003-2214-7604; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü
    The synthesis of heterostructured core-shell nanocrystals has attracted significant attention due to their wide range of applications in energy, medicine and environment. To further extend the possible nanostructures, non-epitaxial growth is introduced to form heterostructures with large lattice mismatches, which cannot be achieved by classical epitaxial growth techniques. Here, we report the synthetic procedure of Au@ZnTe core-shell nanostructures by cation exchange reaction for the first time. For that, bimetallic Au@Ag heterostructures were synthesized by using PDDA as stabilizer and shape-controller. Then, by addition of Te and Zn precursors in a step-wise reaction, the zinc and silver cation exchange was performed and Au@ZnTe nanocrystals were obtained. Structural and optical characterization confirmed the formation of the Au@ZnTe nanocrystals. The optimization of the synthesis led to the bright nanocrystals with a photoluminescence quantum yield up to 27%. The non-toxic, versatile synthetic route, and bright emission of the synthesized Au@ZnTe nanocrystals offer significant potential for future bio-imaging and optoelectronic applications.
  • Loading...
    Thumbnail Image
    Article
    Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer
    (NATURE RESEARCHHEIDELBERGER PLATZ 3, BERLIN 14197, GERMANY, 2021) Karatum, Onuralp; Eren, Guncem Ozgun; Melikov, Rustamzhon; Onal, Asim; Ow-Yang, Cleva W.; Sahin, Mehmet; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Nizamoglu, Sedat
    Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy-metal content in such architectures hinders their safe use. In this study, we demonstrate heavy-metal-free quantum dot-based nano-heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano-heterojunctions using type-II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron-hole wavefunction overlap of 0.52 due to type-II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor-acceptor ratio. This study paves the way toward safe and efficient nanoengineered quantum dot-based next-generation photostimulation devices.