Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Marian, Jaime"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 4
    A Phenomenological Hydrogen Induced Edge Dislocation Mobility Law for Bcc Fe Obtained by Molecular Dynamics
    (Pergamon-Elsevier Science Ltd, 2024) Baltacioglu, Mehmet Furkan; Kapci, Mehmet Fazil; Schoen, J. Christian; Marian, Jaime; Bal, Burak
    Investigating the interaction between hydrogen and dislocations is essential for understanding the origin of hydrogen-related fractures, specifically hydrogen embrittlement (HE). This study investigates the effect of hydrogen on the mobility of 1/2<111>{110} and 1/2<111>{112} edge dislocations in body-centered cubic (BCC) iron (Fe). Specifically, molecular dynamics (MD) simulations are conducted at various stress levels and temperatures for hydrogen-free and hydrogen-containing lattices. The results show that hydrogen significantly reduces dislocation velocities due to the pinning effect. Based on the results of MD simulations, phenomenological mobility laws for both types of dislocations as a function of stress, temperature and hydrogen concentration are proposed. Current findings provide a comprehensive model for predicting dislocation behavior in hydrogencontaining BCC lattices, thus enhancing the understanding of HE. Additionally, the mobility laws can be utilized in dislocation dynamics simulations to investigate hydrogen-dislocation interactions on a larger scale, aiding in the design of HE-resilient materials for industrial applications.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Edge Dislocation Depinning From Hydrogen Atmosphere in Α-Iron
    (Pergamon-Elsevier Science Ltd, 2024) Kapci, Mehmet Fazil; Yu, Ping; Marian, Jaime; Liu, Guisen; Shen, Yao; Li, Yang; Bal, Burak
    Understanding the dislocation motion in hydrogen atmosphere is essential for revealing the hydrogen-related degradation in metallic materials. Atomic simulations were adopted to investigate the interaction between dislocations and hydrogen atoms, where the realistic hydrogen distribution in the vicinity of the dislocation core was emulated from the Grand Canonical Monte Carlo computations. The depinning of edge dislocations in alpha-Fe at different temperatures and hydrogen concentrations was then studied using Molecular Dynamics simulations. The results revealed that an increase in bulk hydrogen concentration increases the flow stress due to the pinning effect of solute hydrogen. The depinning stress was found to decrease due to the thermal activation of the edge dislocation at higher temperatures. In addition, prediction of the obtained results was performed by an elastic model that can correlate the bulk hydrogen concentration to depinning stress.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback