1. Home
  2. Browse by Author

Browsing by Author "Kuzudişli, Cihan"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Gen İfade Miktarı Verisi Analizi için Yinelemeli Öbek Eliminasyon Yöntemlerinin İyileştirilmesi
    (2024) Kuzudişli, Cihan; Güngör, Burcu; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik Fakültesi
    Yeni teknolojilerle üretilen biyolojik verilerin giderek artan boyutluluğunun neden olduğu hesaplama ve yorumlama güçlükleri önemli bir zorluk oluşturmaktadır. Özellik seçimi (FS) yöntemleri boyutu azaltmayı amaçlar ve özellik gruplaması, özellikler arasında güçlü korelasyonları tespit etmeyi ve ilgisiz özellikleri belirlemeyi amaçlayan FS teknikleri için bir temel olarak ortaya çıkmıştır. Bu tezde, gözetimli bir bağlamda özellik gruplandırmasını kullanan yöntemler geliştirilmiştir. Başlangıçta farklı kümeleme algoritmalarının SVM-RCE üzerindeki etkilerini test ettik ve K-means ile en iyi performansı gözlemledik. Geliştirilen ilk yöntem olan Öbek İçi Özellik Eleme ile Yinelemeli Öbek Eleme (RCE-IFE) yönteminde, her öbek azaltma adımında hem öbek hem de öbek içi eleme yinelemeli olarak gerçekleştirilir. Deneysel bulgularımız, RCE-IFE'nin güçlü bir sınıflandırıcı performansı sağladığını ve özellik ilgisini ve tutarlılığını korurken özellik boyutunu önemli ölçüde azalttığını göstermektedir. İkinci geliştirilen Gruplama – Puanlama – Model (G-S-M) tabanlı çalışma olan G-S-M_Rep'de, hastalık gruplarını oluşturmak için ön bilgileri kullanıyoruz ve her grubu temsil edecek en iyi özellikleri seçiyoruz. Bu temsili özellikler model tarafından kümülatif bir şekilde öğrenilir. Sonuçlar G-S-M_Rep'in az sayıda özellikle tatmin edici bir model performansına ulaştığını göstermektedir. Sonuç olarak, bu tez özellik gruplandırmaya dayalı yöntemleri sunmakta ve özellik azaltma yeteneğini, sınıflandırma performansını, özellik alaka düzeyini ve özellik tutarlılığını iyileştirmeye odaklanmaktadır.