Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Kose, Abdulkadir"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 16
    Citation - Scopus: 19
    Recent Advances in Machine Learning for Network Automation in the O-RAN
    (MDPI, 2023) Hamdan, Mutasem Q.; Lee, Haeyoung; Triantafyllopoulou, Dionysia; Borralho, Ruben; Kose, Abdulkadir; Amiri, Esmaeil; Tafazolli, Rahim
    The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit.
  • Loading...
    Thumbnail Image
    Conference Object
    A Comprehensive Investigation into Strip Steel Defect Detection Using Traditional Machine Learning and Deep Learning Models
    (IEEE, 2025) Erkantarci, Betul; Kurban, Rifat; Bakal, Mehmet Gokhan; Kose, Abdulkadir
    The steel manufacturing sector places great importance on guaranteeing the quality of strip steel products, which has led to a thorough investigation of defect detection approaches. This work conducts a comparative analysis of traditional machine learning and deep learning models to determine their efficacy in detecting defects in strip steel. Our analysis is based on a dataset that includes a variety of images of strip steel surfaces showing different types of defects. In this work, we adopt image preprocessing techniques to improve the quality of input images prior to the application of classification methods. We employ traditional ML algorithms including Support Vector Machine and Random Forest, and deep learning model AlexNet Convolutional Neural Networks for effective defect classification. Consequently, we present comparative evaluations that highlight the strengths and weaknesses of each approach, considering accuracy scores.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Multi-Agent Context Learning Strategy for Interference-Aware Beam Allocation in mmWave Vehicular Communications
    (IEEE-Inst Electrical Electronics Engineers Inc, 2024) Kose, Abdulkadir; Lee, Haeyoung; Foh, Chuan Heng; Shojafar, Mohammad
    Millimeter wave (mmWave) has been recognized as one of key technologies for 5G and beyond networks due to its potential to enhance channel bandwidth and network capacity. The use of mmWave for various applications including vehicular communications has been extensively discussed. However, applying mmWave to vehicular communications faces challenges of high mobility nodes and narrow coverage along the mmWave beams. Due to high mobility in dense networks, overlapping beams can cause strong interference which leads to performance degradation. As a remedy, beam switching capability in mmWave can be utilized. Then, frequent beam switching and cell change become inevitable to manage interference, which increase computational and signalling complexity. In order to deal with the complexity in interference control, we develop a new strategy called Multi-Agent Context Learning (MACOL), which utilizes Contextual Bandit to manage interference while allocating mmWave beams to serve vehicles in the network. Our approach demonstrates that by leveraging knowledge of neighbouring beam status, the machine learning agent can identify and avoid potential interfering transmissions to other ongoing transmissions. Furthermore, we show that even under heavy traffic loads, our proposed MACOL strategy is able to maintain low interference levels at around 10%.
  • Loading...
    Thumbnail Image
    Article
    Context-Aware Beam Selection for IRS-Assisted Mmwave V2I Communications
    (MDPI, 2025) Suarez del Valle, Ricardo; Kose, Abdulkadir; Lee, Haeyoung
    Millimeter wave (mmWave) technology, with its ultra-high bandwidth and low latency, holds significant promise for vehicle-to-everything (V2X) communications. However, it faces challenges such as high propagation losses and limited coverage in dense urban vehicular environments. Intelligent Reflecting Surfaces (IRSs) help address these issues by enhancing mmWave signal paths around obstacles, thereby maintaining reliable communication. This paper introduces a novel Contextual Multi-Armed Bandit (C-MAB) algorithm designed to dynamically adapt beam and IRS selections based on real-time environmental context. Simulation results demonstrate that the proposed C-MAB approach significantly improves link stability, doubling average beam sojourn times compared to traditional SNR-based strategies and standard MAB methods, and achieving gains of up to four times the performance in scenarios with IRS assistance. This approach enables optimized resource allocation and significantly improves coverage, data rate, and resource utilization compared to conventional methods.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback