Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Kocer, Mustafa Cagatay"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 3
    Citation - Scopus: 8
    Cloud Induced PV Impact on Voltage Profiles for Real Microgrids
    (Institute of Electrical and Electronics Engineers Inc., 2018) Kocer, Mustafa Cagatay; Yoldaş, Yeliz; Gören, Selçuk; Onen, Ahmet; Alan, İrfan; Al-Agtash, Salem Y.; Tzovaras, Dimitrios K.
    Integration of renewable energy sources (RESs) into power systems has been a popular topic for a long time. Due to government policies and incentives, it will be more popular in the future since it is a free and environment-friendly nature. Besides its advantages, photovoltaic (PV) generation causes some serious problems to the grid. Since PV generation directly depends on the solar irradiance, cloud movements can cause sudden changes on the output of PV power and this results in some power issues in the system such as voltage violations, reverse power flow, voltage fluctuations. These types of issues complicate to maintain voltage within compulsory levels at customer sides. Thus, cloud-induced transients in PV power are seen as a potential handicap for the future expansion of renewable energy resources. This study investigates effects of instantaneous changes in PV power on the customer side voltage levels. Daily PV power output and voltage profiles were simulated using a real-world microgrid design that will be implemented in the Malta College of Arts Science and Technology (MCAST) Campus. © 2023 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 9
    Optimization of Multiple Battery Swapping Stations With Mobile Support for Ancillary Services
    (Frontiers Media S.A., 2022) Kocer, Mustafa Cagatay; Onen, Ahmet; Ustun, Taha Selim; Albayrak, Sahin
    The recent developments in electric vehicles (EVs) causes several issues that have not been satisfactorily addressed. One of the foremost problems is the charging-discharging processes of EV batteries with diverse characteristics. Although a charging station is the first choice in this regard, a battery swap station (BSS) is also a suitable alternative solution as it eliminates long waiting periods and battery degradation due to fast charging. BSS has the capability to ensure prompt and efficient service for electric vehicles. Since BSS has a large number of battery systems, optimum planning of the charging-discharging operations of the batteries is critical for both BSS and the grid. This study presents an optimal charging-discharging schedule for multiple BSSs based on the swap demand of privately owned EVs and electric bus (EB) public transportation system. In addition, BSSs reinforce the power grid by providing ancillary services such as peak shaving and valley filling with demand response programs. In order to increase the flexibility of the operation, the mobile swapping station (MSS) concept, an innovative and dynamic service, is introduced to the literature and added to the model. The results indicate that BSS is an essential agent in the ancillary services market and the MSS concept is a yielding solution for both BSSs and power networks. Last, the data utilized in the study for swap demand calculation and power grid analysis are real-world data from Berlin, Germany.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 30
    Citation - Scopus: 36
    Assessment of Battery Storage Technologies for a Turkish Power Network
    (MDPI, 2019) Kocer, Mustafa Cagatay; Cengiz, Ceyhun; Gezer, Mehmet; Gunes, Doruk; Cinar, Mehmet Aytac; Alboyaci, Bora; Onen, Ahmet
    Population growth has brought an increase in energy demand and cost that has a meaningful impact on personal and government expenses. In this respect, governments attach importance to investments in renewable energy resources (RER), which are a sustainable and clean energy source. However, the unpredictable characteristics of RER are a major problem for these clean sources and RER need auxiliary assets. Battery energy storage systems (BESS) are one of the promising solutions for these issues. Due to the high investment cost of BESS, governments act cautiously about accepting and implementing BESS in their power network. Recently, with the improvement of technology, the cost of BESS has been reduced, and therefore battery technologies have begun to be applied to conventional systems. In this study, first, we will review and discuss the current globally state-of-the-art BESS and their applications. Later, attention will be turned to a country-specific study for Turkey.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 20
    Citation - Scopus: 23
    Optimal Location and Sizing of Electric Bus Battery Swapping Station in Microgrid Systems by Considering Revenue Maximization
    (IEEE-Inst Electrical Electronics Engineers Inc, 2023) Kocer, Mustafa Cagatay; Onen, Ahmet; Jung, Jaesung; Gultekin, Hakan; Albayrak, Sahin
    The radical increase in the popularity of electric vehicles (EVs) has in turn increased the number of associated problems. Long waiting times at charging stations are a major barrier to the widespread adoption of EVs. Therefore, battery swapping stations (BSSs) are an efficient solution that considers short waiting times and healthy recharging cycles for battery systems. Moreover, swapping stations have emerged as a great opportunity not only for EVs, but also for power systems, with regulation services that can be provided to the grid particularly for small networks, such as microgrid (MG) systems. In this study, the optimum location and size that maximize the revenue of a swap station in an MG system are investigated. To the best of our knowledge, this study is first to solve the placing and sizing problem in the MG from the perspective of a BSS. The results indicate that bus 23 is the BSS's optimal location and is crucial for maximizing revenue and addressing issues like the provision of ancillary services in microgrid system. Finally, the swap demand profile of the station serving electric bus public transportation system was obtained using an analytical model based on public transportation data collected in Berlin, Germany.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback