1. Home
  2. Browse by Author

Browsing by Author "Kim, Hyungsug"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    BODIPY-Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thin-Film Transistors
    (WILEY-V C H VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY, 2019) Ho, Dongil; Ozdemir, Resul; Kim, Hyungsug; Earmme, Taeshik; Usta, Hakan; Kim, Choongik; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü;
    The rapid emergence of organic (opto)electronics as a promising alternative to conventional (opto)electronics has been achieved through the design and development of novel pi-conjugated systems. Among various semiconducting structural platforms, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) pi-systems have recently attracted attention for use in organic thin-films transistors (OTFTs) and organic photovoltaics (OPVs). This Review article provides an overview of the developments in the past 10 years on the structural design and synthesis of BODIPY-based organic semiconductors and their application in OTFT/OPV devices. The findings summarized and discussed here include the most recent breakthroughs in BODIPYs with record-high charge carrier mobilities and power conversion efficiencies (PCEs). The most up-to-date design rationales and discussions providing a strong understanding of structure-property-function relationships in BODIPY-based semiconductors are presented. Thus, this review is expected to inspire new research for future materials developments/applications in this family of molecules.
  • Loading...
    Thumbnail Image
    Article
    A new rod-shaped BODIPY-acetylene molecule for solution-processed semiconducting microribbons in n-channel organic field-effect transistors
    (ROYAL SOC CHEMISTRYTHOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND, 2017) Ozdemir, Mehmet; Choi, Donghee; Zorlu, Yunus; Cosut, Bunyemin; Kim, Hyungsug; Kim, Choongik; Usta, Hakan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Usta, Hakan; Ozdemir, Mehmet
    BODIPY-based pi-conjugated small molecules have been extensively studied in various fields of sensing and biochemical labelling; however, their use in organic optoelectronic applications is very limited. A new solution-processable acceptor-donor-acceptor (A-D-A) type small molecule, BDY-PhAc-BDY, consisting of BODIPY pi-acceptors and a rod-shaped 1,4-bis-(thienylethynyl) 2,5-dialkoxybenzene pi-donor, has been synthesized and fully characterized as a novel n-channel semiconductor in bottom-gate/top-contact organic field-effect transistors (OFETs). The new semiconductor exhibits an electrochemical band gap of 2.12 eV with highly stabilized HOMO/LUMO energy levels of -5.68 eV/-3.56 eV. Single-crystal X-ray diffraction (XRD) analysis of BDY-PhAc-BDY reveals a relatively low "BODIPY-meso-thiophene" dihedral angle (theta = 44.94 degrees), antiparallel pi-stacked BODIPY dimers with an interplanar distance of 3.93 angstrom, and strong "C-H center dot center dot center dot pi (2.85 angstrom)" interactions. The OFET devices fabricated by solution processing show the formation of highly-crystalline, one-dimensional (1-D) microribbons, which results in clear n-channel semiconductivity with an electron mobility of 0.004 cm(2) V-1 s(-1) and an on/off current ratio of 10(5)-10(6). To date, this is the highest reported for BODIPY-based small molecular semiconductors with alkyne linkages. Our results clearly demonstrate that BODIPY is an effective pi-acceptor unit for the design of solution-processable, electron-transporting organic semiconductors and easily fabricable 1-D semiconductor micro-/nano-structures for fundamental/applied research in organic optoelectronics.
  • Loading...
    Thumbnail Image
    Article
    Semiconducting Copolymers Based on meso-Substituted BODIPY for Inverted Organic Solar Cells and Field-Effect Transistors
    (Advanced Electronic Materials, 2018) Ozdemir, Mehmet; Kim, Sang Woo; Kim, Hyungsug; Kim, Myung-Gil; Kim, Bumjoon J.; Kim, Choongik; Usta, Hakan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü;
    The synthesis, physicochemical, and optoelectronic properties of a new class of low band-gap (?1.3 eV) donor–acceptor copolymers based on a highly electron-deficient meso-5-(2-octyldodecyl)thiophene-substituted BODIPY ?-unit are presented. The polymeric solutions exhibit strong aggregation-dependent excitonic properties indicating the presence of enhanced ?-coherence as a result of strong interchain interactions. The polymeric semiconductor thin films prepared by spin coating show isotropic nodule-like grains with essentially no ordering in the out-of-plane direction. Field-effect hole mobilities of 0.005 cm2 V-1·s-1 are observed in bottom-gate top-contact organic field-effect transistors, and inverted bulk-heterojunction organic photovoltaics employing the polymer:PC71BM active layer exhibit excellent power conversion efficiencies of 6.2% with a short-circuit current of 16.6 mA cm-2. As far as it is known, this is a record high value achieved to date for a boron-containing donor polymer in the photovoltaic literature indicating a significant enhancement in power conversion efficiency (>3–4 times). The findings clearly present that rationally designed BODIPY-based donor–acceptor copolymers can be a key player in photovoltaic applications.
  • Loading...
    Thumbnail Image
    Article
    A Solution-Processable Liquid-Crystalline Semiconductor for Low-Temperature-Annealed Air-Stable N-Channel Field-Effect Transistors
    (WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2017) Ozdemir, Resul; Choi, Donghee; Ozdemir, Mehmet; Kim, Hyekyoung; Kostakoglu, Sinem Tuncel; Erkartal, Mustafa; Kim, Hyungsug; Kim, Choongik; Usta, Hakan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Ozdemir, Resul; Ozdemir, Mehmet; Erkartal, Mustafa; Usta, Hakan
    A new solution-processable and air-stable liquid-crystalline nchannel organic semiconductor (2,2'-(2,8-bis(5-(2-octyldodecyl) thiophen-2-yl) indeno[1,2-b] fluorene-6,12-diylidene) dimalononitrile, alpha,omega-2OD-TIFDMT) with donor-acceptor-donor (D-AD) pi conjugation has been designed, synthesized, and fully characterized. The new semiconductor exhibits a low LUMO energy (-4.19 eV) and a narrow optical bandgap (1.35 eV). The typical pseudo-focal-conic fan-shaped texture of a hexagonal columnar liquid-crystalline (LC) phase was observed over a wide temperature range. The spin-coated semiconductor thin films show the formation of large (approximate to 0.5-1 mu m) and highly crystalline platelike grains with edge-on molecular orientations. Low-temperature-annealed (50 degrees C) top-contact/bottom-gate OFETs have provided good electron obility values as high as 0.11 cm(2) (Vs)(-1) and high I-on/I-off ratios of 10(7) to 10(8) with excellent ambient stability. This indicates an enhancement of two orders of magnitude (100 V) when compared with the b-substituted parent semiconductor, beta-DD-TIFDMT (2,2'-(2,8-bis(3-dodecylthiophen- 2-yl) indeno[1,2-b] fluorene-6,12-diylidene) dimalononitrile). The current rational alkyl-chain engineering route offers great advantages for D-A-D pi-core coplanarity in addition to maintaining good solubility in organic solvents, and leads to favorable optoelectronic/physicochemical characteristics. These remarkable findings demonstrate that alpha,omega-2OD-TIFDMT is a promising semiconductor material for the development of n-channel OFETs on flexible plastic substrates and LC-state annealing of the columnar liquid crystals can lower the electron mobility for transistor-type charge transport.