1. Home
  2. Browse by Author

Browsing by Author "Kesmen, Zulal"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Multi fragment melting analysis system (MFMAS) for one-step identification of lactobacilli
    (ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2020) Kesmen, Zulal; Kilic, Ozge; Gormez, Yasin; Celik, Mete; Bakir-Gungor, Burcu; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
    The accurate identification of lactobacilli is essential for the effective management of industrial practices associated with lactobacilli strains, such as the production of fermented foods or probiotic supplements. For this reason, in this study, we proposed the Multi Fragment Melting Analysis System (MFMAS)-lactobacilli based on high resolution melting (HRM) analysis of multiple DNA regions that have high interspecies heterogeneity for fast and reliable identification and characterization of lactobacilli. The MFMAS-lactobacilli is a new and customized version of the MFMAS, which was developed by our research group. MFMAS-lactobacilli is a combined system that consists of i) a ready-to-use plate, which is designed for multiple HRM analysis, and ii) a data analysis software, which is used to characterize lactobacilli species via incorporating machine learning techniques. Simultaneous HRM analysis of multiple DNA fragments yields a fingerprint for each tested strain and the identification is performed by comparing the fingerprints of unknown strains with those of known lactobacilli species registered in the MFMAS. In this study, a total of 254 isolates, which were recovered from fermented foods and probiotic supplements, were subjected to MFMAS analysis, and the results were confirmed by a combination of different molecular techniques. All of the analyzed isolates were exactly differentiated and accurately identified by applying the single-step procedure of MFMAS, and it was determined that all of the tested isolates belonged to 18 different lactobacilli species. The individual analysis of each target DNA region provided identification with an accuracy range from 59% to 90% for all tested isolates. However, when each target DNA region was analyzed simultaneously, perfect discrimination and 100% accurate identification were obtained even in closely related species. As a result, it was concluded that MFMAS-lactobacilli is a multi-purpose method that can be used to differentiate, classify, and identify lactobacilli species. Hence, our proposed system could be a potential alternative to overcome the inconsistencies and difficulties of the current methods.
  • Loading...
    Thumbnail Image
    Article
    Prediction of Linear Cationic Antimicrobial Peptides Active against Gram-Negative and Gram-Positive Bacteria Based on Machine Learning Models
    (MDPI, 2022) Bakır Güngör, Burcu; Söylemez, Ümmü Gülsüm; Yousef, Malik; Kesmen, Zulal; Büyükkiraz, Mine Erdem; ABC-1093-2021; 0000-0001-8780-6303; 0000-0002-4505-6871; 0000-0002-6602-772X; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakır Güngör, Burcu
    Antimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this study, we focused on the linear cationic peptides with non-hemolytic activity, which are downloaded from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). Referring to the MIC (Minimum inhibition concentration) values, we have assigned a positive label to a peptide if it shows antimicrobial activity; otherwise, the peptide is labeled as negative. Here, we focused on the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately, and we created two datasets accordingly. Ten different physico-chemical properties of the peptides are calculated and used as features in our study. Following data exploration and data preprocessing steps, a variety of classification algorithms are used with 100-fold Monte Carlo Cross-Validation to build models and to predict the antimicrobial activity of the peptides. Among the generated models, Random Forest has resulted in the best performance metrics for both Gram-negative dataset (Accuracy: 0.98, Recall: 0.99, Specificity: 0.97, Precision: 0.97, AUC: 0.99, F1: 0.98) and Gram-positive dataset (Accuracy: 0.95, Recall: 0.95, Specificity: 0.95, Precision: 0.90, AUC: 0.97, F1: 0.92) after outlier elimination is applied. This prediction approach might be useful to evaluate the antibacterial potential of a candidate peptide sequence before moving to the experimental studies.