Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Kelestemur, Yusuf"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Zinc Chalcogenide Based Shell Layers for Colloidal Quantum Wells
    (Wiley, 2025) Aldemir, Cagatay Han; Yazici, Ahmet Faruk; Ergezer, Nehir; Korkmaz, Taha Can; Mutlugun, Evren; Kelestemur, Yusuf
    Colloidal quantum wells, also known as colloidal nanoplatelets (NPLs), have emerged as a promising class of materials for light-emitting devices (LEDs). However, the most widely studied core/shell NPLs, which rely on cadmium-based shell layers, face challenges due to toxicity concerns and improper charge confinement. To address these limitations, a new synthetic approach is presented that enables the controlled growth of zinc chalcogenide-based shell layers on NPLs. The synthesized CdSe/ZnSe core/shell NPLs exhibit emission between 615 and 630 nm, with a moderate photoluminescence quantum yield (PL-QY) of 40-50%. It is also demonstrated that the lateral dimensions of the CdSe core NPLs significantly affect the optical properties of the core/shell heterostructures, with smaller lateral dimensions resulting in narrower emission linewidths as low as 20 nm. Further passivation of these core/shell NPLs with an additional ZnS shell layer significantly increases the PL-QY up to 80-90%. Finally, the device performance of these two core/shell NPLs is investigated by fabricating solution-processed LEDs. With LEDs incorporating CdSe/ZnSe/ZnS core/multi-shell NPLs as the active light-emitting layer, an external quantum efficiency (EQE) of 3.82% and a maximum brightness of 6477 cd m-2 is obtained. These findings underscore the significant potential of zinc chalcogenide-based shell layers in advancing colloidal NPLs toward high-performance light-emitting devices.
  • Loading...
    Thumbnail Image
    Article
    Performance Boost in QLEDs Using Octanethiol-Capped Core/Shell Quantum Dots
    (IOP Publishing Ltd, 2026) Yazici, Ahmet F.; Yuruc, Adnan M.; Kelestemur, Yusuf; Serin, Ramis Berkay; Kacar, Rifat; Ulku, Alper; Mutlugun, Evren
    Quantum dots attract significant attention as one of the most promising colloidal nanocrystals with unique optical properties and potential applications for the next generation of display technology. In this paper, we evaluate the performance of CdZnSeS-based alloyed-shell quantum dots (QDs) for electroluminescence devices upon additional shell growth and ligand exchange. This includes core/shell (C/S) and core/shell/shell (C/S/S) QDs, whose latter includes an additional ZnS shell and octanethiol (OT) ligands. We present detailed characterizations of QDs using transmission electron microscopy, XRD, and various spectroscopic techniques and demonstrate their QD light emitting (QLEDs). We find the photoluminescence quantum yield of C/S/S QDs increased from 68.8% to 88.7% compared to C/S QDs whereas the emission linewidth narrows from 22.2 nm to 20.8 nm. QLEDs fabricated with C/S/S QDs exhibit a higher peak external quantum efficiency (EQE) of 4.1% and maximum luminance of 85 000 cd m-2, compared to 2.3% EQE and 67 000 cd m-2 for C/S QLEDs. In this respect, the OT-assisted shell growth significantly improves the optical property of QDs and performance of QLEDs, likely attributed to the enhanced charge balance and increased radiative recombination rate.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 88
    Citation - Scopus: 85
    Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth
    (Wiley-VCH Verlag GmbH, 2019) Altintas, Yemliha; Quliyeva, Ulviyya; Gungor, Kivanc; Erdem, Onur; Kelestemur, Yusuf; Mutlugun, Evren; Demir, Hilmi Volkan
    Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c-ALD) provides the ability to produce their core/shell heterostructures. However, as c-ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near-unity efficiency CdSe/ZnS NPLs are shown using hot-injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI-shell hetero-NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c-ALD shell-coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI-shell NPLs exhibit ultralow gain thresholds reaching approximate to 7 mu J cm(-2). Despite being annealed at 500 K, these ZnS-HI-shell NPLs possess low gain thresholds as small as 25 mu J cm(-2). These findings indicate that the proposed 573 K HI-shell-grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback