1. Home
  2. Browse by Author

Browsing by Author "Kalay, Mustafa"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Labyrinthine Microstructures with a High Dipole Moment Boron Complex for Molecular Physically Unclonable Functions
    (Amer Chemical Soc, 2025) Yildiz, Tevhide Ayca; Kiremitler, N. Burak; Kayaci, Nilgun; Kalay, Mustafa; Ozcan, Emrah; Deneme, Ibrahim; Usta, Hakan; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 10. Rektörlük
    The design and development of novel molecular-physically unclonable functions (PUFs) with advanced encoding characteristics and ease of fabrication have recently attracted attention in cryptography, secure authentication, and anticounterfeiting. Here, we report the development of a new high dipole-moment small molecule, InIm-BF2, a difluoroborate complex of an indolyl-imine ligand, and the fabrication of unique labyrinthine patterns through a facile two-step thin film process under ambient conditions. The new molecule has a dipolar, coplanar pi-backbone and arranges in the solid state with antisymmetric cofacial pi-stackings (3.86 & Aring;). These properties, along with short C-Hpi contacts (2.74-2.88 & Aring;) and nonclassical C-HF hydrogen bonds (2.47-2.51 & Aring;) (23.4% and 11.5% of the Hirshfeld surfaces, respectively), drive the formation of amorphous molecular PUF patterns with disordered, short-range interactions. Spin-coating followed by thermal annealing at a moderate temperature produces nanoscopic molecular thin films with intricate labyrinthine patterns. These patterns, characterized by interconnected, irregularly shaped, micron-sized (approximate to 50-100 mu m) features, exhibit excellent PUF characteristics, verified through advanced image analysis and computational algorithms. Unlike randomly positioned isolated features in classical binarized keys, the interconnected labyrinthine patterns possess rich entropy and complex features, directly authenticated via deep-learning methodologies. Our work not only demonstrates a facile, promising approach to fabricating unique high-entropy PUF patterns but also provides critical insights into designing advanced molecular materials for next-generation security applications.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 81
    Citation - Scopus: 75
    Organic Light-Emitting Physically Unclonable Functions
    (Wiley-VCH Verlag GmbH, 2022) Kayaci, Nilgun; Ozdemir, Resul; Kalay, Mustafa; Kiremitler, N. Burak; Usta, Hakan; Onses, M. Serdar; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The development of novel physically unclonable functions (PUFs) is of growing interest and fluorescent organic semiconductors (f-OSCs) offer unique advantages of structural versatility, solution-processability, ease of processing, and great tuning ability of their physicochemical/optoelectronic/spectroscopic properties. The design and ambient atmosphere facile fabrication of a unique organic light-emitting physically unclonable function (OLE-PUF) based on a green-emissive fluorescent oligo(p-phenyleneethynylene) molecule is reported. The OLE-PUFs have been prepared by one-step, brief (5 min) thermal annealing of spin-coated nanoscopic films (approximate to 40 nm) at a modest temperature (170 degrees C), which results in efficient surface dewetting to form randomly positioned/sized hemispherical features with bright fluorescence. The random positioning of molecular domains generated the unclonable surface with excellent uniformity (0.50), uniqueness (0.49), and randomness (p > 0.01); whereas the distinctive photophysical and structural properties of the molecule created the additional security layers (fluorescence profile, excited-state decay dynamics, Raman mapping/spectrum, and infrared spectrum) for multiplex encoding. The OLE-PUFs on substrates of varying chemical structures, surface energies and flexibility, and direct deposition on goods via drop-casting are demonstrated. The OLE-PUFs immersed in water, exposed to mechanical abrasion, and read-out repeatedly via fluorescence imaging showed great stability. These findings clearly demonstrate that rationally engineered solution-processable f-OSCs have a great potential to become a key player in the development of new-generation PUFs.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Stochastic Orientational Encoding via Hydrogen Bonding Driven Assembly of Woven-Like Molecular Physically Unclonable Functions
    (Wiley-VCH Verlag GmbH, 2025) Kayaci, Nilgun; Kiremitler, Nuri Burak; Deneme, Ibrahim; Kalay, Mustafa; Ozbasaran, Aleyna; Zorlu, Yunus; Usta, Hakan; 01. Abdullah Gül University; 10. Rektörlük; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The prevention of counterfeiting and the assurance of object authenticity require stochastic encoding schemes based on physically unclonable functions (PUFs). There is an urgent need for exceptionally large encoding capacities and multi-level responses within a molecularly defined, single-material system. Herein, a novel stochastic orientational encoding approach is demonstrated using a facile ambient-atmosphere solution processing of a molecular thin film based on the rod-shaped oligo(p-phenyleneethynylene) (OPE) pi-architecture. The nanoscopic film, derived from the small molecule 2EHO-CF3PyPE with donor, acceptor, and pi-spacer building units, is designed for energetically favorable uniaxial molecular assembly and crystal growth via directional multiple hydrogen-bonding motifs at the molecular termini and short C & horbar;Hpi contacts at the center. A facile solvent vapor annealing induces concurrent dewetting and microscopic 1D random crystallization, yielding a woven-textured random features. Using convolutional neural networks, the rich variations in microcrystal domain properties and stochastic encoding of 1D crystal orientations generate artificial coloration, achieving an encoding capacity reaching (6.5 x 10(4))(2752 x 2208). The results demonstrate an effective strategy for achieving ultrahigh encoding capacities in a thin film composed of a single-material. This approach enables low-cost, solution-processed fabrication for mass production and broad adoption, while opening new opportunities to explore molecular-PUFs through structural design and engineering noncovalent interactions.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Structurally Colored Physically Unclonable Functions With Ultra-Rich and Stable Encoding Capacity
    (Wiley-VCH Verlag GmbH, 2025) Esidir, Abidin; Ren, Miaoning; Pekdemir, Sami; Kalay, Mustafa; Kayaci, Nilgun; Gunaltay, Nail; Onses, Mustafa Serdar; 0000-0002-0618-1979; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Usta, Hakan; 01. Abdullah Gül University
    Identity security and counterfeiting assume a critical importance in the digitized world. An effective approach to addressing these issues is the use of physically unclonable functions (PUFs). The overarching challenge is a simultaneous combination of extremely high encoding capacity, stable operation, practical fabrication, and a widely available readout mechanism. Herein this challenge is addressed by designing an optical PUF via exploiting the thickness-dependent structural color formation in nanoscopic films of ZnO. The structural coloration ensures authentication using widely available bright-field-based optical readout, whereas the metal oxide provides a high degree of structural stability. True physical randomness in spatial position is achieved by physical vapor deposition of ZnO through stencil masks that are fabricated by pore formation in polycarbonate membranes via photothermal processing of stochastically positioned plasmonic nanoparticles. Structural coloration emerges from thin film interference as confirmed via simulation studies. The rich color variation and stochastic definition of domain size and geometry result in chaotic features with an encoding capacity that approaches (6.4 x 105)(2752x2208). Deep learning-based authentication is further demonstrated by transforming these chaotic features into unbreakable codes without field limitations. This ultra-rich encoding capacity, coupled with outstanding thermal and chemical stability, forms a new cutting edge for state-of-the-art PUF-based encoding systems.