1. Home
  2. Browse by Author

Browsing by Author "Kabore, Kader Monhamady"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Çoklu Robot Sistemleri için Lokalizasyon Algoritması Tasarımı ve Gerçekleştirilmesi
    (2024) Kabore, Kader Monhamady; Güler, Samet; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği
    Çok robotlu sistemler (MRS), tek bir robot için son derece zorlayıcı olan karmaşık görevleri gerçekleştirebilir. Örneğin, iş birliğiyle taşıma, alan kapsama ve arama-kurtarma operasyonları gibi uygulamalarda, MRS en iyi seçenek olabilir. MRS, görevleri daha basit komutlara bölerek bireysel robotlara atar. Bu yapı, ölçeklenebilirlik ve tek bir hata noktasına karşı dayanıklılık gibi önemli avantajlar sağlayan merkezi olmayan yaklaşımlara ilgiyi artırmıştır. MRS'deki formasyon kontrolü, özellikle GPS'in bulunmadığı ve dış altyapının olmadığı ortamlarda güçlü robot konumlandırmasına dayanır. Dış ortamlarda GPS mutlak konumlandırma sağlayabilir ancak kapalı alanlar veya tüneller gibi ortamlarda sürü robotları için yetersiz kalabilir. Hareket yakalama sistemleri gibi kapalı alan konumlandırma çözümleri, yüksek maliyetli olup ek altyapı kurulum prosedürleri gerektirir. Bu sınırlamalar, sürü robotikleri uygulamaları için uygun, dayanıklı ve dahili konumlandırma sistemlerine olan ihtiyacı vurgulamaktadır. Bu çalışma, tamamen dahili yeteneklere dayanan, dış altyapıya bağımlılığı ortadan kaldıran yeni bir merkezi olmayan, işaretleyicisiz konumlandırma çerçevesi sunmaktadır. MRS için bir konumlandırma çözümü bulmak amacıyla, yöntemimiz, derin öğrenme ile güçlendirilmiş iş birliği temelli konumlandırma algoritmalarını formasyon kontrol mekanizmalarıyla birleştirmektedir. Önerilen çerçevenin etkinliğini doğrulamak için kapsamlı simülasyonlar ve gerçek dünya deneyleri gerçekleştirilmiştir. Sistem ölçeklenebilirliği, farklı ekip boyutlarına uyum sağlayarak test edilmiştir ve uygulamalardaki etkinliği gösterilmiştir. Bu çalışma ayrıca yer robotları için açık kaynaklı bir veri seti sunarak MRS alanında daha fazla araştırmayı teşvik etmektedir.
  • Loading...
    Thumbnail Image
    Book Part
    Citation - Scopus: 3
    Deep Learning Based Formation Control of Drones
    (Springer Science and Business Media Deutschland GmbH, 2021) Kabore, Kader Monhamady; Guler, Samet; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği
    Robot swarms can accomplish demanding missions fast, efficiently, and accurately. For a robust operation, robot swarms need to be equipped with reliable localization algorithms. Usually, the global positioning system (GPS) and motion capture cameras are employed to provide robot swarms with absolute position data with high precision. However, such infrastructures make the robots dependent on certain areas and hence reduce robustness. Thus, robots should have onboard localization capabilities to demonstrate a swarm behavior in challenging scenarios such as GPS-denied environments. Motivated by the need for a reliable onboard localization framework for robot swarms, we present a distance and vision-based localization algorithm integrated into a distributed formation control framework for three-drone systems. The proposed approach is established upon the bearing angles and the relative distances between the pairs of drones in a cyclic formation where each drone follows its coleader. We equip each drone with a monocular camera sensor and derive the bearing angle between a drone and its coleader with the recently developed deep learning algorithms. The onboard measurements are then relayed back to the formation control algorithm in which every drone computes its control action in its own frame based on its neighbors only, forming a completely distributed architecture. The proposed approach enables three-drone systems to perform in coordination indepen- dent of any external infrastructure. We validate the performance of our approach in a realistic simulation environment. © 2021 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 15
    Citation - Scopus: 27
    Distributed Formation Control of Drones With Onboard Perception
    (IEEE-Inst Electrical Electronics Engineers Inc, 2022) Kabore, Kader Monhamady; Guler, Samet; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği
    While aerial vehicles offer enormous benefits in several application domains, multidrone localization and control in uncertain environments with limited onboard sensing capabilities remains an active research field. A formation control solution which does not rely on external infrastructure aids such as GPS and motion capture systems must be established based on onboard perception feedback. We address the integration of onboard perception and decision layers in a distributed formation control architecture for three-drone systems. The proposed algorithm fuses two sensor characteristics, distance, and vision, to estimate the relative positions between the drones. Particularly, we utilize the omnidirectional sensing property of the ultrawideband distance sensors and a deep learning-based bearing detection algorithm in a filter. The entire system leads to a closed-loop perception-decision framework, whose stability and convergence properties are analyzed exploiting its modular structure. Remarkably, the drones do not use a common reference frame. We verified the framework through extensive simulations in a realistic environment. Furthermore, we conducted real world experiments using two drones and proved the applicability of the proposed framework. We conjecture that our solution will prove useful in the realization of future drone swarms.
  • Loading...
    Thumbnail Image
    Master Thesis
    İş Zekası için Makine Öğrenmesi Yöntemlerinin Geliştirilmesi
    (Abdullah Gül Üniversitesi, 2018) KABORE, KADER MONHAMADY; Kabore, Kader Monhamady; Aydın, Zafer; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik Fakültesi
    Anahtar özelliklerin tespiti, verilerin artması ve büyük belgelerin daha hızlı ve kolay erişilebilir olmasından dolayı giderek ilgi duyulan bir araştırma alanıdır. Anahtar özellik, belgeler için meta veri görevi görür ve doğru özelliklerin keşfi sayesinde, uzun metinlerden önemli bilgi parçalarının yakalanmasını sağlar. Anahtar özellikler, internet alanında giderek artan web sitelerinden daha hızlı ve verimli bilgi keşfetme imkanı sağlayabilir. Bu tezde, verilen bir web sayfası metninden şirket ismini otomatik olarak tespit eden iki aşamalı yeni bir makine öğrenmesi yöntemi geliştirilmiştir. İlk aşamada verilen bir kelimenin şirket ismi olup olmadığını tahmin eden bir sınıflandırma yöntemi geliştirilmiştir. Yöntemin kullandığı öznitelikler doğal dil işleme teknikleri ile ve metinsel verilerdeki örüntülerin incelenmesi sonucu kelimelerin özelliklerini ve içeriğe ilişkin anlamını yansıtacak şekilde çıkarılmıştır. Bu öznitelikler daha sonra naive Bayes, karar ağacı ve rastgele orman gibi sınıflandırma yöntemlerine girdi parametresi olarak aktarılmaktadır. İkinci aşama içinse kural tabanlı bir sınıflandırma yöntemi geliştirilmiştir. Bu yöntem alan ve başlıktaki kelimelerini de tarayarak simge benzerlik ölçütleri ile şirket ismi olmaya aday olan kelimeleri sıralamakta ve en yüksek skorlu kelimeleri şirket ismi olarak tahmin etmektedir. Yapılan deneyler sonucunda birinci aşamadaki sınıflandırıcı ile yüksek hassasiyet oranı elde edilirken özellike zor olan bazı metinlerdeki şirket isimlerinin tanımsız kategorisine atandığı gözlenmiştir. Diğer taraftan kural tabanlı sınıflandırma yöntemi ile yüksek doğruluk oranı elde edilmiştir ancak bu yöntemin hassaslık oranı birinci aşamadaki yöntemden daha düşüktür. İki sınıflandırıcının birleştirilmesi sonucu elde edilen iki aşamalı sınıflandırma yöntemi ile hem genel doğruluk oranı hem de hassaslık oranı yüksek olarak elde edilmiştir.
  • Loading...
    Thumbnail Image
    Conference Object
    Practical Formation Acquisition Mechanism for Nonholonomic Leader-Follower Networks
    (Scitepress, 2022) Kabore, Kader Monhamady; Guler, Samet; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği
    A grand challenge lying ahead of the realization of multi-robot systems is the lack of an adequate coordination mechanism with reliable localization solutions. In some workspaces, external infrastructure needed for precise localization may not be always available to the MRS, e.g., GPS-denied environments, and the robots may need to rely on their onboard resources without explicit communication. We address the practical formation control of nonholonomic ground robots where external localization aids are not available. We propose a systematic framework for the formation maintenance problem that is composed of a localization module and a control module. The onboard localization module relies on heterogeneity in sensing modality comprised of ultrawideband, 2D LIDAR, and camera sensors. Particularly, we apply deep learning-based object detection algorithm to detect the bearing between robots and fuse the outcome with ultrawideband distance measurements for precise relative localization. Integration of the localization outcome into a distributed formation acquisition controller yields high performance. Furthermore, the proposed framework can eliminate the magnetometer sensor which is known to produce unreliable heading readings in some environments. We conduct several realistic simulations and real world experiments whose results validate the competency of the proposed solution.