1. Home
  2. Browse by Author

Browsing by Author "Kaçmaz, Rukiye Nur"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Anormallik Tespiti için Veri Madenciliği
    (Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Kaçmaz, Rukiye Nur; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University
    Gastroentereloji uzmanları için kolon anormalliklerinin tespit edilmesi en zor görevlerden birisidir. Kolonoskopi herhangi bir anormalliği izlemek için kolondan video veya görüntüler kaydetmenin en yaygın yöntemidir. Bununla birlikte işlem sırasında elde edilen görüntü veya videolar, kolonoskopi probunun ya da kapsülün hızlı hareketinden kaynaklanan hareket gürültüsü, kapsülde ve probda ışık kaynağından kaynaklanan yansıma gürültüsü (YG), yetersiz veya aşırı aydınlatmadan kaynaklanan uygun olmayan kontrast gürültüsü, mide öz suyu, baloncuklar veya kalıntılar içermektedir. Bu tarz gürültüler içeren görüntülere bilgi taşımayan çerçeveler adı verilmektedir. Hastalık tespiti işlemi ise bilgi içeren olarak adlandırılan temiz görüntüler ile yürütülmektedir. İlk çalışmada tekstür tabanlı otomatik polip tespitinde YG'nin etkisini ve YG'yi ortadan kaldırmak için kullanılan görüntü enterpolasyonunun kullanımı araştırıldı. Bu amaçla, çeşitli boyutlarda sonradan YG eklenen ve interpolasyon uygulanan görüntülerden ve YG içermeyen görüntülerden çeşitli tekstür özellikleri elde edildi. Polipleri kolon arka planından ayırt etmek için, uygulanan en yakın komşular, bilineer ve bikübik interpolasyon yöntemlerinin, tekstür özellikleri ve sınıflandırma performansı açısından herhangi bir farklılığa neden olup olmadığı test edildi. İkinci çalışmada temel amaç, bilgi taşımayan çerçeveleri tespit etmede geleneksel makine öğrenmesi ve transfer öğrenme yaklaşımlarının performanslarının karşılaştırılmasıydı. Makine öğrenmesi bölümünde, gri seviye eş oluşum matrisi, gri seviye koşu uzunluğu matrisi, komşuluk gri ton farkı matrisi, odak ölçüm operatörleri ve basıklık, standart sapma ve çarpıklık olarak üç adet birinci derece istatistik kullanıldı. Sınıflandırma aşamasında rastgele orman, destek vektör makineleri ve karar ağacı yaklaşımları kullanılmıştır. Transfer öğrenme bölümünde derin sinir ağları olarak AlexNet, SqueezeNet, GoogleNet, ShuffleNet, ResNet-18, ResNet-50, NasNetMobile ve MobileNet tercih edildi. Son çalışma, bilgi taşıyan çerçevelerde Crohn's, ülseratif kolit, kanser ve polip gibi kolon anormalliklerinin saptanmasını içermiştir. Bu çalışmanın amacı, öncelikle sağlıklı çerçeveleri hastalıklılardan ayırmak ve hem geleneksel makine öğrenmesi hem de transfer öğrenme yaklaşımlarını kullanarak hastalık türlerini belirlemekti. İkinci çalışmada kullanılanlarla aynı tekstür özellikleri, sınıflandırma yaklaşımları ve transfer öğrenme yöntemleri kullanılmıştır.