Browsing by Author "Jalali, Houman Bahmani"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs(AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036, 2021) Eren, Guncem Ozgun; Sadeghi, Sadra; Jalali, Houman Bahmani; Ritter, Maximilian; Han, Mertcan; Baylam, Isinsu; Melikov, Rustamzhon; Onal, Asim; Oz, Fatma; Sahin, Mehmet; Ow-Yang, Cleva W.; Sennaroglu, Alphan; Lechner, Rainer T.; Nizamoglu, Sedat; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sahin, MehmetIt is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based typeII QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of similar to 91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle Xray scattering shows that spherical InP core and InP/ZnO core/ shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.Article Colloidal Aluminum Antimonide Quantum Dots(AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2019) Jalali, Houman Bahmani; Sadeghi, Sadra; Sahin, Mehmet; Ozturk, Hande; Ow-Yang, Cleva W.; Nizamoglu, Sedat; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü;AlSb is a less studied member of the III-V semiconductor family, and herein, we report the colloidal synthesis of AlSb quantum dots (QDs) for the first time. Different sizes of colloidal AlSb QDs (5 to 9 nm) were produced by the controlled reaction of AlCl3 and Sb[N(Si(Me)(3))(2)](3) in the presence of superhydride. These colloidal AlSb quantum dots showed excitonic transitions in the UV-A region and a tunable band edge emission (quantum yield of up to 18%) in the blue spectral range. Among all III-V quantum dots, these quantum dots show the brightest core emission in the blue spectral region.Article Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots(AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2018) Jalali, Houman Bahmani; Aria, Mohammad Mohammadi; Dikbas, Ugur Meric; Sadeghi, Sadra; Kumar, Baskaran Ganesh; Sahin, Mehmet; Kavakli, Ibrahim Halil; Ow-Yang, Cleva W.; Nizamoglu, Sedat; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü;Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 mu W mm(-2), 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.