Browsing by Author "Isik, Furkan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays(WILEY-V C H VERLAG GMBH, 2022) Erdem, Talha; Soran-Erdem, Zeliha; Isik, Furkan; Shabani, Farzan; Yazici, Ahmet Faruk; Mutlugun, Evren; Gaponik, Nikolai; Demir, Hilmi Volkan; 0000-0001-7607-9286; 0000-0003-2747-7856; 0000-0003-3905-376X; 0000-0003-3715-5594; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Erdem, Talha; Soran-Erdem, Zeliha; Yazıcı, Ahmet Faruk; Mutlugün, EvrenColloidal quantum wells (CQWs) are excellent candidates for lighting and display applications owing to their narrow emission linewidths (<30 nm). However, realizing their efficient and stable light-emitting solids remains a challenge. To address this problem, stable, efficient solids of CQWs incorporated into crystal matrices are shown. Green-emitting CdSe/CdS core/crown and red-emitting CdSe/CdS core/shell CQWs wrapped into these crystal solids are employed as proof-of-concept demonstrations of light-emitting diode (LED) integration targeting a wide color span in display backlighting. The quantum yield of the green- and red-emitting CQW-containing solids of sucrose reach approximate to 20% and approximate to 55%, respectively, while emission linewidths and peak wavelengths remain almost unaltered. Furthermore, sucrose matrix preserves approximate to 70% and approximate to 45% of the initial emission intensity of the green- and red-emitting CQWs after >60 h, respectively, which is approximate to 4x and approximate to 2x better than the drop-casted CQW films and reference (KCl) host. Color-converting LEDs of these green- and red-emitting CQWs in sucrose possess luminous efficiencies 122 and 189 lm W-elect(-1), respectively. With the liquid crystal display filters, this becomes 39 and 86 lm W-elect(-1), respectively, providing with a color gamut 25% broader than the National Television Standards Committee standard. These results prove that CQW solids enable efficient and stable color converters for display and lighting applications.Article Deep-Red-Emitting Colloidal Quantum Well Light-Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure(WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Shabani, Farzan; Dehghanpour Baruj, Hamed; Yurdakul, Iklim; Delikanli, Savas; Gheshlaghi, Negar; Isik, Furkan; Liu, Baiquan; Altintas, Yemliha; Canimkurbey, Betul; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, YemlihaExtending the emission peak wavelength of quasi-2D colloidal quantum wells has been an important quest to fully exploit the potential of these materials, which has not been possible due to the complications arising from the partial dissolution and recrystallization during growth to date. Here, the synthetic pathway of (CdSe/CdS)@(1-4 CdS/CdZnS) (core/crown)@(colloidal atomic layer deposition shell/hot injection shell) hetero-nanoplatelets (NPLs) using multiple techniques, which together enable highly efficient emission beyond 700 nm in the deep-red region, is proposed and demonstrated. Given the challenges of using conventional hot injection procedure, a method that allows to obtain sufficiently thick and passivated NPLs as the seeds is developed. Consequently, through the final hot injection shell coating, thick NPLs with superior optical properties including a high photoluminescence quantum yield of 88% are achieved. These NPLs emitting at 701 nm exhibit a full-width-at-half-maximum of 26 nm, enabled by the successfully maintained quasi-2D shape and minimum defects of the resulting heterostructure. The deep-red light-emitting diode (LED) device fabricated with these NPLs has shown to yield a high external quantum efficiency of 6.8% at 701 nm, which is on par with other types of LEDs in this spectral range.