1. Home
  2. Browse by Author

Browsing by Author "Hussaini, Shokrullah"

Filter results by typing the first few letters
Now showing 1 - 11 of 11
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 125
    Citation - Scopus: 142
    Critical Review on Secondary Zinc Resources and Their Recycling Technologies
    (Elsevier, 2020) Kaya, Muammer; Hussaini, Shokrullah; Kursunoglu, Sait; 01. Abdullah Gül University
    In a race to save the earth of its rapidly depleting natural resources, the use of Secondary Raw Materials (SMRs) as alternative replacements in several processes is currently intensively pursued. The valorization of SMRs is consistent with the sustainable circular economy, where resource efficiency is maximized for the benefit of both the economy and green environment. In line with this mandate, this article focuses on investigating recent studies on secondary zinc (Zn) resources and describing state-of-art Zn recycling technologies. Globally, some of the main Zn-containing secondary raw materials are mine/concentrator/smelter tailings, wastes, slags, scraps, dust, etc. Although the pyrometallurgical process has been dominant in the secondary metal recycling processes, there has been growing interest and pressure to achieve sustainable and greener recycling methods to remediate the environmental problems caused by emissions of toxic heavy metals and sulfur oxides in the traditional smelting process. In the last decades, many sustainable and environmentally friendly novel hydrometallurgical processes for Zn extraction were developed to overcome tougher legislation and meet cost competitiveness. Secondary Zn recycling focuses on the development of selective Zn-rich but Pb, Fe, As-lean recovery processes.
  • Loading...
    Thumbnail Image
    Article
    Citation - Scopus: 5
    Extraction of Lanthanum and Cerıum from a Bastnasite Ore By Direct Acidic Leaching
    (Chamber of Mining Engineers of Turkey, 2020) Kursunoglu, Sait; Top, S.; Hussaini, Shokrullah; Gokcen, H. S.; Altiner, Mahmut; Ozsarac, Safak; Kaya, Muammer; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The extraction of lanthanum (La) and cerium (Ce) from a bastnasite ore by direct acidic leaching was investigated. The effects of acid concentration and leaching temperature on the extraction of La and Ce from the ore were tested. Using nitric (NHO3), more than 85% of the La and Ce were simultaneously extracted into leach solution whereas the La and Ce dissolutions were determined as less than 85% by using sulfuric acid (H2SO4). The La dissolution exceeded 90% by using hydrochloric acid (HCl); however, the Ce dissolution remained below 85% under the following conditions: solid-to-liquid ratio of 20% (w/v), the acid concentration of 20%, leaching temperature of 25°C and leaching time of 1 h. The result revealed that HNO3 could be used as a solvent for the maximum simultaneous extraction of the La and Ce from the bastnasite ore. The leaching temperature had no crucial effect on the dissolution of La and Ce when HNO3 or HCl solutions were preferred as a solvating agent. However, the leaching temperature had a slight positive effect on the dissolutions of La and Ce when H2SO4 was used as a solvent. © 2023 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Leaching of a Complex Zn-Pb Ore in Sulfuric Acid Solution
    (2024) Gökçen, Hasan Serkan; Altıner, Mahmut; Kaya, Muammer; Top, Soner; Kursunoglu, Sait; Hussaini, Shokrullah; Ozsarac, Safak; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    Bu çalışmada Gazipaşa-Aydap kompleks Zn-Pb cevher numunesinin sülfürik asit çözeltisindeki liç davranışı incelenmiştir. Öncelikle cevher örneğinin kimyasal ve mineralojik bileşimleri AAS, ICP-OES, XRF ve XRD analizleri ile belirlenmiştir. Cevherin yapısının çok karmaşık olduğu ve yüksek miktarda çinko (%16.4), kurşun (%10.6), demir (%2.6) ve az miktarda bakır (%0.2) içerdiği görülmüştür. 2 M sülfürik asit konsantrasyonu, 25 °C liç sıcaklığı, 1/10 katı/sıvı oranı ve 125 rpm çalkalama hızı parametrelerinde gerçekleştirilen liç işlemi ile %86.7 Zn, %90 Cu ve %25.2 Fe'nin liç çözeltisine alınabileceği saptanmıştır. Deneysel sonuçlar, liç sıcaklığının arttırılmasının çinko çözünmesi üzerinde yararlı bir etkisinin olmadığını ancak demir çözünmesini önemli ölçüde arttırdığını ortaya koymuştur. Genel olarak çinkonun, kısa bir liç süresi (30 dakika), düşük bir liç sıcaklığı (25 °C), nispeten düşük bir sülfürik asit konsantrasyonu (2 M) ve nispeten yüksek bir katı-sıvı oranı (2/10) kullanılarak kompleks cevherden ekstrakte edilebileceği belirlenmiştir.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 12
    Citation - Scopus: 12
    Leaching of Turkish Oxidized Pb-Zn Flotation Tailings by Inorganic and Organic Acids
    (Springer International Publishing AG, 2020) Kaya, Muammer; Kursunoglu, Sait; Hussaini, Shokrullah; Gul, Erkan; 01. Abdullah Gül University
    An eco-friendly approach and simultaneous recovery of metals from mine tailings is still a significant challenge. This study investigates the extraction of zinc metal from the Kayseri region oxidized lead-zinc (Pb-Zn) flotation tailings by leaching using three different inorganic acids (HNO3, HCl, and H2SO4) and six different organic acids (citric (CA), oxalic (OA), formic (FA), ascorbic (AA), malic (MA), and tartaric (TA) acids). The effects of acid type and concentration, leaching temperature and time, and solid/liquid (S/L) ratio were studied for maximum Zn dissolution and minimum Pb, Fe, and As co-dissolution at lowest temperature and leaching time. For inorganic acids at 1/10 S/L ratio, 1.0MH(2)SO(4) and HCl concentrations achieved 92% Zn + 0% Pb + 12% Fe at 40 degrees C leaching temperature and 60 min leaching time and 92% Zn + 10% Pb + 0% Fe at 80 degrees C leaching temperature and 30 min leaching time, respectively. For organic acids, at 1/10 S/L ratio and 1.0M concentration, 92% Zn + 8.3% Pb with malic acid at 80 degrees C leaching temperature and 180 min leaching time and 91% Zn + 12% Pb with citric acid at 60 degrees C leaching temperature and 180 min leaching time were achieved. 1.0 M formic acid dissolved about 83% Zn + 2.8% Pb at 80 degrees C and 180 min leaching time. More than 90% Zn dissolution can be succeeded by using either inorganic acids at 40 degrees C for 30-60 min leaching time or organic acids at 60-80 degrees C for 180 min leaching time. Oxalic acid significantly dissolved Fe and As without Zn and Pb dissolution.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 2
    Leaching of Yahyali Non-Sulphide Pb-Zn Flotation Tailing Using Organic Acids
    (Baski, 2019) Hussaini, Shokrullah; Kursunoglu, Sait; Kaya, Muammer; 01. Abdullah Gül University
    The laboratory scale leaching of Kayseri-Yahyali non-sulphide lead (Pb)-zinc (Zn) flotation tailing using two organic acids was experimentally investigated. The effect of citric and oxalic acid on the dissolution of Zn, Pb, iron (Fe) and arsenic (As) was individually investigated under the following conditions: citric or oxalic acid concentration of 0.5-1.0M, temperature of 60-80°C and leaching time of 30-180 min. at 1/10 solid-to-liquid (S/L) ratio. 90.1% Zn dissolution was achieved using 0.5 M citric acid at 80°C leaching temperature for 180 min leaching time. The Fe, Pb and As dissolutions were determined as less than 20% under the conditions tested. 95.5% Fe and 68.8% As were removed from the flotation tailing along with less than 5% of Zn and Pb using 1.0 M oxalic acid for 180 min. leaching time at 60°C leaching temperature. It was found that citric acid is more prominent than oxalic acid for the selective leaching of zinc from the flotation tailing whereas a substantial amount of iron and arsenic removal can be achived by oxalic acid leaching. The use of NaCl along with citric acid was not useful for higher Zn dissolution. Based on the experimental results, an appropriate process will be improved for the selective leaching of valuable metals from the Pb-Zn non-sulphide flotation tailing in the near future. © 2020 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 12
    Citation - Scopus: 15
    Pb-Zn Recovery From a Malic Leach Solution of a Carbonate Type Ore Flotation Tailing by Precipitation and Solvent Extraction
    (Elsevier, 2021) Hussaini, Shokrullah; Tita, Angela Manka; Kursunoglu, Sait; Top, Soner; Ichlas, Zela Tanlega; Kar, Umut; Kaya, Muammer; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The recovery of zinc and lead from a malic leach solution of a carbonate type ore flotation tailing by precipitation with sulfuric acid followed by solvent extraction using di(2-ethylhexyl)phosphoric acid (D2EHPA) as extractant was investigated. The separation of lead via precipitation was essentially complete from the malic acid leach solution by adding sulphuric acid to reach a pH of 0.25 at 25 degrees C. The precipitate product was identified by XRD as anglesite (PbSO4). The pregnant leach solution after lead precipitation was then subjected to solvent extraction using D2EHPA. The optimum solvent extraction conditions were determined as 10% D2EHPA concentration, 25 degrees C temperature, 10 min contact time and phase ratio of unity. Under these conditions, 99.3% of zinc was extracted into the organic phase at a pH of 4.2 in a single contact alongside a substantial amount of Ca (76.6%), and minor amounts of Fe (19.2%) and Mg (18%). Complete stripping of zinc and calcium from the loaded organic solution along with 47.8% of Mg was achieved at a pH 0.5 under room temperature. No iron stripping was observed from the loaded organic. The zinc content in the loaded strip solution could be enriched and then sent to the electrowinning (EW) stage. It is noted that the calcium and magnesium impurities in the loaded strip solution had no adverse effect on the zinc EW process. Based on the experimental results, a flowsheet was proposed for the recovery of Pb and Zn from the malic acid leach solution. With the proposed precipitation and solvent extraction process, two different material streams are produced.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 12
    Citation - Scopus: 11
    Production of Mixed Rare Earth Oxide Powder From a Thorium Containing Complex Bastnasite Ore
    (Elsevier, 2021) Kursunoglu, Sait; Hussaini, Shokrullah; Top, Soner; Ichlas, Zela Tanlega; Gokcen, Hasan Serkan; Ozsarac, Safak; Kaya, Muammer; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The production of mixed rare earth oxide powder from a thorium containing bastnasite ore by sulfuric acid bake water leaching followed by precipitation with oxalic acid and thermal decomposition of the oxalates was investigated. The sulfuric acid baking was performed at 250 degrees C and the optimum baking time was found to be 3 h. Using deionized water as lixiviant, 92.6% La, 86.8% Ce, 86.9% Pr, 82.3% Nd, 95.4% Th and 31% Y were dissolved from the baked ore at 25 degrees C after 30 min of leaching. The effect of solid-to-liquid ratio on the dissolution of the rare earth elements and thorium shows that when the solid ratio in the water increased from 1:10 to 1:3, the dissolution percentage decreased. The final mixed rare earth oxide powder contained 88.54% REO and 6% ThO20 together with small amounts of other impurities. The SEM mapping results revealed that the produced REO has an irregular crystal shape. Based on the experimental results obtained from the current study, a flowsheet was proposed for the production of mixed rare earth oxide powder from a specific complex bastnasite ore. (C) 2020 Elsevier B.V. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 6
    Recovery of Lead and Zinc From a Citric Leach Solution of a Non-Sulfide Type Ore Flotation Tailing via Precipitation Followed by Solvent Extraction
    (Springer, 2023) Hussaini, Shokrullah; Tita, Angela Manka; Kursunoglu, Sait; Top, Soner; Kaya, Muammer; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The recovery of zinc (Zn) and lead (Pb) from a citric leach solution of a non sulfide type ore flotation tailing was examined utilizing sulfuric acid precipitation followed by solvent extraction using di(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant. Following lead precipitation (98.9%) with sulfuric acid, the pregnant leach solution was sent to solvent extraction stage with D2EHPA for the separation of zinc from the other impurities such as Ca, Mg and Fe. The best solvent extraction conditions were determined to be a concentration of 20% D2EHPA, temperature of 25 degrees C, contact time of 10 min and phase ratio of unity. Under the optimum conditions, 98.3% Zn was extracted into the organic phase in a single contact at a pH of 3.6, along with a significant amount of Ca (79%) and minor amounts of Mg (14.7%) and Fe (8.6%). At pH 4.5, the loaded organic solution was carried to the scrubbing stage, where 20 g/L zinc solution was used to remove approximately 91% Ca and 34% Mg from the organic solution. At a pH of 0.25, the loaded organic solution was almost completely stripped of zinc and 27% of calcium in two steps.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 33
    Citation - Scopus: 42
    Selection of an Appropriate Acid Type for the Recovery of Zinc From a Flotation Tailing by the Analytic Hierarchy Process
    (Elsevier Sci Ltd, 2021) Kursunoglu, Sait; Kursunoglu, Nilufer; Hussaini, Shokrullah; Kaya, Muammer; 01. Abdullah Gül University
    The selection of acid type for metal dissolution from minerals is an important issue in leaching operations. Acids are used to recover valuable elements from the minerals by dissolving them in a solution. The acid must offer a high recovery at marginal cost and a low environmental effect. Many parameters can affect the acid type selection for high leaching recovery and low environmental effect and thus, the selection of an acid type is complex. In this study, based on the experimental results obtained from the bench-scale laboratory studies, the selection of acid type for the recovery of zinc from a flotation tailing was investigated using the analytic hierarchy process (AHP). The utilization of AHP was supported by the use of ExpertChoice (R) 2000 software. The outcomes demonstrated that sulfuric acid is the most desirable acid type with a ranking of 0.541, tracked by citric acid, and oxalic acid with scoring of 0.282 and 0.177, respectively. Furthermore, analyses of sensitivity were performed to examine the influence of the main criteria on the different acid type. It emerged that citric acid can be used when the environmental main criterion ascended from 7.8% to 75.3%. (C) 2020 Elsevier Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Selective Leaching of a Mixed Nickel-Cobalt Hydroxide Precipitate in Sulphuric Acid Solution With Potassium Permanganate as Oxidant
    (Taylor & Francis inc, 2021) Hussaini, Shokrullah; Ichlas, Zela Tanlega; Top, Soner; Kursunoglu, Sait; Kaya, Muammer; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    Selective leaching of a mixed nickel-cobalt hydroxide precipitate was investigated using potassium permanganate as oxidant in sulfuric acid solution. 94.9% Ni, 50% Co and 0.6% Mn were dissolved under the following conditions: sulfuric acid concentration of 0.75 M, potassium permanganate of 5 g/L, temperature of 30 degrees C, leaching duration of 60 min, solid-to-liquid ratio of 1/10, and stirring speed of 400rpm. The pregnant leach solution was subjected to a solvent extraction process. 98% Co and 99% Mn were extracted at pH 4.84 with 30% (v/v) Cyanex 272, leaving essentially all nickel in the raffinate. Based on the experimental results, a flowsheet is proposed.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 28
    Citation - Scopus: 34
    Testing of 17-Different Leaching Agents for the Recovery of Zinc From a Carbonate-Type Pb-Zn Ore Flotation Tailing
    (Pergamon-Elsevier Science Ltd, 2021) Hussaini, Shokrullah; Kursunoglu, Sait; Top, Soner; Ichlas, Zela Tanlega; Kaya, Muammer; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi
    The recovery of zinc from a flotation tailing using 17-different leaching agents, including inorganic and organic acids, alkaline solutions and chelating agents, was investigated. The effects of the lixiviant type, acid concentration, leaching temperature, leaching time, and solid-to-liquid ratio on the metals dissolution were studied. The use of sulfuric acid resulted in 91% of zinc extraction with a high selectivity against lead. The major impurities of lead, iron, calcium and arsenic precipitated during the leaching process as a segnisite, beudantite, gypsum, and goethite in this lixiviant. It was seen that the addition of oxidants in sulfuric acid solution slightly increased zinc dissolution. The citric acid dissolved 90.1% of zinc along with 9.1% lead. 90% of zinc dissolution was achieved by using malic acid, and high selectivity between zinc and lead dissolutions was also observed. The citric and malic acid leach residues contained a substantial amount of segnitite, beudantite, and quartz as the major phases. In term of zinc and lead dissolution selectivity, the best inorganic agents were determined in the following order: sulfuric acid > hydrochloric acid > perchloric acid > nitric acid. With organic agents, the best zinc and lead selectivity was achieved in the following order: sulfosalicylic acid > citric acid > malic acid > formic acid > tartaric acid > ascorbic acid. The best simultaneous zinc and lead dissolutions were achieved using sodium hydroxide agent. Using 5 M sodium hydroxide at 80 degrees C and 1/10 solid-to-liquid ratio for 180 min. leaching time, 81.4% of zinc and 47.4% of lead were dissolved while leaving a considerable amount of iron in the residue. When the ammonium chloride was used as a lixiviant, the silver and zinc were taken into the leach solution. 61.3% of zinc dissolution was obtained by using 50% ammonia as lixiviant, whereas no iron and lead dissolutions were observed. Using 0.37 M EDTA at 80 degrees C, 1/10 solid-to-liquid ratio for 180 min. leaching time, more than 90% of zinc dissolved along with a substantial amount of iron, arsenic and lead co-dissolutions. 47.4% of zinc dissolution was obtained at 80 degrees C and 1/10 solid-to-liquid ratio for 180 min. leaching time when sodium citrate was used as lixiviant, whereas less than 20% of zinc dissolved using ammonium oxalate at similar leaching condition. 39% zinc was dissolved using 3 M ammonium acetate at 80 degrees C, 1/10 solid-to-liquid ratio for 180 min., while 23.1% of zinc dissolution was achieved when the ammonium acetate was tested under similar experimental conditions. As a result, sulfuric, citric, malic, sulfosalicylic and formic acids were deemed to be the most promising leaching agents for the selective recovery of zinc from the lead-zinc flotation tailing.