Browsing by Author "Gungor, Vehbi Cagr"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Network anomaly detection using Deep Autoencoder and parallel Artificial Bee Colony algorithm-trained neural network(PEERJ INC, 2024) Hacilar, Hilal; Dedeturk, Bilge Kagan; Bakir-Gungor, Burcu; Gungor, Vehbi Cagr; 0000-0002-5811-6722; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Hacilar, Hilal; Bakir-Gungor, BurcuCyberattacks are increasingly becoming more complex, which makes intrusion detection extremely difficult. Several intrusion detection approaches have been developed in the literature and utilized to tackle computer security intrusions. Implementing machine learning and deep learning models for network intrusion detection has been a topic of active research in cybersecurity. In this study, artificial neural networks (ANNs), a type of machine learning algorithm, are employed to determine optimal network weight sets during the training phase. Conventional training algorithms, such as back- propagation, may encounter challenges in optimization due to being entrapped within local minima during the iterative optimization process; global search strategies can be slow at locating global minima, and they may suffer from a low detection rate. In the ANN training, the Artificial Bee Colony (ABC) algorithm enables the avoidance of local minimum solutions by conducting a high-performance search in the solution space but it needs some modifications. To address these challenges, this work suggests a Deep Autoencoder (DAE)-based, vectorized, and parallelized ABC algorithm for training feed-forward artificial neural networks, which is tested on the UNSW-NB15 and NF-UNSW-NB15-v2 datasets. Our experimental results demonstrate that the proposed DAE-based parallel ABC-ANN outperforms existing metaheuristics, showing notable improvements in network intrusion detection. The experimental results reveal a notable improvement in network intrusion detection through this proposed approach, exhibiting an increase in detection rate (DR) by 0.76 to 0.81 and a reduction in false alarm rate (FAR) by 0.016 to 0.005 compared to the ANN-BP algorithm on the UNSWNB15 dataset. Furthermore, there is a reduction in FAR by 0.006 to 0.0003 compared to the ANN-BP algorithm on the NF-UNSW-NB15-v2 dataset. These findings underscore the effectiveness of our proposed approach in enhancing network security against network intrusions.Article Node-Level Error Control Strategies for Prolonging the Lifetime of Wireless Sensor Networks(IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC445 HOES LANE, PISCATAWAY, NJ 08855-4141, 2021) Tekin, Nazli; Yildiz, Huseyin Ugur; Gungor, Vehbi Cagr; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Gungor, Vehbi CagrıIn Wireless Sensor Networks (WSNs), energy-efficiency and reliability are two critical requirements for attaining a long-term stable communication performance. Using error control (EC) methods is a promising technique to improve the reliability of WSNs. EC methods are typically utilized at the network-level, where all sensor nodes use the same EC method. However, improper selection of EC methods on some nodes in the network-level strategy can reduce the energy-efficiency, thus the lifetime of WSNs. In this study, a node-level EC strategy is proposed via mixed-integer programming (MIP) formulations. The MIP model determines the optimum EC method (i.e., automatic repeat request (ARQ), forward error correction (FEC), or hybrid ARQ (HARQ)) for each sensor node to maximize the network lifetime while guaranteeing a pre-determined reliability requirement. Five meta-heuristic approaches are developed to overcome the computational complexity of the MIP model. The performances of the MIP model and meta-heuristic approaches are evaluated for a wide range of parameters such as the number of nodes, network area, packet size, minimum desired reliability criterion, transmission power, and data rate. The results show that the node-level EC strategy provides at least 4.4% prolonged lifetimes and 4.0% better energy-efficiency than the network-level EC strategies. Furthermore, one of the developed meta-heuristic approaches (i.e., extended golden section search) provides lifetimes within a 3.9% neighborhood of the optimal solutions, reducing the solution time of the MIP model by 89.6%.