Browsing by Author "Gazioglu, Isil"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 13Citation - Scopus: 14Triterpenoids and Steroids Isolated from Anatolian Capparis Ovata and Their Activity on the Expression of Inflammatory Cytokines(Taylor & Francis Ltd, 2020) Gazioglu, Isil; Semen, Sevcan; Acar, Ozden Ozgun; Kolak, Ufuk; Sen, Alaattin; Topcu, GulactiContext CapparisL. (Capparaceae) is grown worldwide. Caper has been used in traditional medicine to treat various diseases including rheumatism, kidney, liver, stomach, as well as headache and toothache. Objective To isolate and elucidate of the secondary metabolites of theC. ovataextracts which are responsible for their anti-inflammatory activities. Materials and methods Buds, fruits, flowers, leaves and stems ofC. ovataDesf. was dried, cut to pieces, then ground separately. From their dichloromethane/hexane (1:1) extracts, eight compounds were isolated and their structures were elucidated by NMR, mass spectroscopic techniques. The effects of compounds on the expression of inflammatory cytokines in SH-SY5Y cell lines were examined by qRT-PCR ranging from 4 to 96 mu M. Cell viability was expressed as a percentage of the control, untreated cells. Results This is a first report on isolation of triterpenoids and steroids fromC. ovatawith anti-inflammatory activity. One new triterpenoid ester olean-12-en-3 beta,28-diol, 3 beta-pentacosanoate (1) and two new natural steroids 5 alpha,6 alpha-epoxycholestan-3 beta-ol (5) and 5 beta,6 beta-epoxycholestan-3 beta-ol (6) were elucidated besides known compounds; oleanolic acid (2), ursolic acid (3), beta-sitosterol (4), stigmast-5,22-dien-3 beta-myristate (7) and bismethyl-octylphthalate (8). mRNA expression levels as EC(10)of all the tested seven genes were decreased, particularly CXCL9 (19.36-fold), CXCL10 (8.14-fold), and TNF (18.69) by the treatment of 26 mu M of compound1on SH-SY5Y cells. Discussion and conclusions Triterpenoids and steroids isolated fromC. ovatawere found to be moderate-strong anti-inflammatory compounds. Particularly, compounds1and3were found to be promising therapeutic agents in the treatment of inflammatory and autoimmune diseases.Article A Small Indole Derivative Isolated From Caper (Capparis Ovata) as an Inducer of P53-Mediated Apoptosis in Prostate Cancer: Comprehensive In Vitro and In Silico Studies(Wiley, 2025) Acar, Ozden Ozgun; Gazioglu, Isil; Oruc, Hatice; Kale, Elif; Senol, Halil; Topcu, Gulacti; Sen, AlaattinNatural products with stunning chemical diversity have been extensively researched for their anticancer potential for more than fifty years. This study aimed to determine the effect of indole derivative 1H-indole-2-hydroxy-3-carboxylic acid (IHCA), isolated as a novel alkaloid from Capparis ovata, on selected tumor suppressor, apoptotic, and cell cycle regulatory genes, which are known to be important in cancer pathophysiology, on Caco-2 and LNCaP cells in comparison with Taxol. The molecular mechanism of IHCA's anticancer activity is essentially undefined. Different concentrations of IHCA increased the expression levels of apoptosis-related genes, including BCL-2 and TNF-alpha. In addition, the tumor suppressor genes PTEN, P53, and RB were increased in LNCaP and Caco-2 cells. KRAS, an oncogenic gene, was significantly downregulated by IHCA in LNCaP cells. Western blot results showed that the protein expression levels of P53 and PTEN in LNCaP cells were increased when treated with IHCA, whereas CDK4 and TNF-alpha were decreased. Finally, IHCA and doxorubicin significantly increased P53-driven luciferase activity compared to the control. The results strongly suggest that the novel natural compound IHCA has an anticancer effect involving the regulation of the P53 gene and its networks in vitro. The molecular docking and MD simulation analyses reveal that IHCA exhibits superior binding potential to the MDM2 protein compared to Nutlin-3a. MD simulations further confirm that IHCA maintains a more stable and consistent interaction with MDM2, as indicated by lower RMSD values and reduced ligand fluctuation. These results highlight IHCA's potential as a more effective MDM2 inhibitor, suggesting its promise as a lead compound for anticancer drug development.Clinical Trial Registration: Not applicable.

