1. Home
  2. Browse by Author

Browsing by Author "Gaponik, Nikolai"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays
    (WILEY-V C H VERLAG GMBH, 2022) Erdem, Talha; Soran-Erdem, Zeliha; Isik, Furkan; Shabani, Farzan; Yazici, Ahmet Faruk; Mutlugun, Evren; Gaponik, Nikolai; Demir, Hilmi Volkan; 0000-0001-7607-9286; 0000-0003-2747-7856; 0000-0003-3905-376X; 0000-0003-3715-5594; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Erdem, Talha; Soran-Erdem, Zeliha; Yazıcı, Ahmet Faruk; Mutlugün, Evren
    Colloidal quantum wells (CQWs) are excellent candidates for lighting and display applications owing to their narrow emission linewidths (<30 nm). However, realizing their efficient and stable light-emitting solids remains a challenge. To address this problem, stable, efficient solids of CQWs incorporated into crystal matrices are shown. Green-emitting CdSe/CdS core/crown and red-emitting CdSe/CdS core/shell CQWs wrapped into these crystal solids are employed as proof-of-concept demonstrations of light-emitting diode (LED) integration targeting a wide color span in display backlighting. The quantum yield of the green- and red-emitting CQW-containing solids of sucrose reach approximate to 20% and approximate to 55%, respectively, while emission linewidths and peak wavelengths remain almost unaltered. Furthermore, sucrose matrix preserves approximate to 70% and approximate to 45% of the initial emission intensity of the green- and red-emitting CQWs after >60 h, respectively, which is approximate to 4x and approximate to 2x better than the drop-casted CQW films and reference (KCl) host. Color-converting LEDs of these green- and red-emitting CQWs in sucrose possess luminous efficiencies 122 and 189 lm W-elect(-1), respectively. With the liquid crystal display filters, this becomes 39 and 86 lm W-elect(-1), respectively, providing with a color gamut 25% broader than the National Television Standards Committee standard. These results prove that CQW solids enable efficient and stable color converters for display and lighting applications.