Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Eren, Guncem Ozgun"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 21
    Citation - Scopus: 23
    Antibacterial Type-II InP/ZnO Quantum Dots Via Multimodal Reactive Oxygen Species
    (Elsevier Science SA, 2024) Khan, Saad Ullah; Eren, Guncem Ozgun; Atac, Nazli; Onal, Asim; Qureshi, Mohammad Haroon; Cooper, Francis Korshe; Nizamoglu, Sedat
    The emergence of multidrug-resistant bacteria as a global health threat has necessitated the exploration of alternative treatments to combat bacterial infections. Among these, photocatalytic nanomaterials such as quantum dots (QDs) have shown great promise and type-I QDs have been investigated thus far. In this study, we introduce type-II InP/ZnO core/shell QDs that are ligand-exchanged with a short-chain inorganic sulfide ion (S2-) for antibacterial activity. Interestingly, InP/ZnO QDs simultaneously generate reactive oxygen species (ROS) including hydroxyl (center dot OH) and superoxide (O-2(center dot-) ) radicals, while only O-2(center dot-) radicals can be released by the type-I sulfide-capped InP/ZnS QDs. The optimized nanostructure achieved effective inhibition of Pseudomonas aeruginosa and Escherichia coli bacteria growth to the level of 99.99% and 70.31% under low-intensity green light illumination of 5 mW.cm(-2). Our findings highlight the importance of type-II QDs as a new avenue for developing effective antibacterial agents against drug-resistant pathogens.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 28
    Citation - Scopus: 25
    Quantum Dot and Electron Acceptor Nano-Heterojunction for Photo-Induced Capacitive Charge-Transfer
    (Nature Portfolio, 2021) Karatum, Onuralp; Eren, Guncem Ozgun; Melikov, Rustamzhon; Onal, Asim; Ow-Yang, Cleva W.; Sahin, Mehmet; Nizamoglu, Sedat
    Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy-metal content in such architectures hinders their safe use. In this study, we demonstrate heavy-metal-free quantum dot-based nano-heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano-heterojunctions using type-II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron-hole wavefunction overlap of 0.52 due to type-II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor-acceptor ratio. This study paves the way toward safe and efficient nanoengineered quantum dot-based next-generation photostimulation devices.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 56
    Citation - Scopus: 56
    Cadmium-Free and Efficient Type-II InP/ZnO Quantum Dots and Their Application for Leds
    (Amer Chemical Soc, 2021) Eren, Guncem Ozgun; Sadeghi, Sadra; Jalali, Houman Bahmani; Ritter, Maximilian; Han, Mertcan; Baylam, Isinsu; Nizamoglu, Sedat
    It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based typeII QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of similar to 91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle Xray scattering shows that spherical InP core and InP/ZnO core/ shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback