Browsing by Author "Erdem, Talha"
Now showing 1 - 20 of 20
- Results Per Page
- Sort Options
Conference Object Active Control of the Nanoparticle Self-Assembly for Photonic Applications(META Conference, 2023) Erdem, Talha; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiColloidal nanoparticles enable collective utilization of the inherent properties of the nanoparticles. Furthermore, their collective optical response can be fine-tuned employing DNA-driven self-assembly. Here, we present that the optical transmission of self-assembled DNA-functionalized gold nanoparticle network can be actively manipulated using an external optical excitation. We also show control of optical polarization of emitted light from semiconducting supraparticle networks hybridized with magnetic supraparticles. These results prove the potential of programmed nanoparticle self-assembly in tailoring optical features of colloidal systems. © 2023 Elsevier B.V., All rights reserved.Article Bruggemann Teorisi Temelli Metal ve Polimer Melez Izgaralarının Optik Polarizasyon Tepkisi(2025) Erdem, Talha; Taze, Emirhan; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiMevcut literatürde ızgara tasarımlarının farklı metaller ve polimerler içeren kompozisyonları yeterince ele alınmamıştır. Çalışmamız, değişen malzeme kompozisyonlarının polarizasyon özellikleri üzerindeki etkisini araştırarak bu boşluğu doldurmayı amaçlamaktadır. Bu sorunu ele almak için, Bruggeman Teorisi'ni kullanarak altın, gümüş ve poli(dimetil siloksan) (PDMS) karışımlarının kırılma indisleri hesaplanmış, bu melez malzemelerden yapılan ızgaraların optik geçirgenliği ve yansıması simüle edilmiştir. Analizimiz, çeşitli malzeme oranları için farklı dalga boylarında polarizasyon oranında belirgin tepe noktaları ortaya koymuştur. Özellikle, simülasyon sonuçlarımız, polarizasyon oranının 450-1000 nm aralığında ayarlanması potansiyelini göstermektedir. Dahası, simülasyon ortamında hem 0 hem de 1 polarizasyon oranlarına ulaşılabildiği gösterilmiştir. Bu sonuçlar, belirli dalga boylarını hedefleyen optik filtreler ve polarizörler tasarlanmasına olanak sağlayacaktır.Article Citation - WoS: 2Citation - Scopus: 2Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays(Wiley-VCH Verlag GmbH, 2022) Erdem, Talha; Soran-Erdem, Zeliha; Isik, Furkan; Shabani, Farzan; Yazici, Ahmet Faruk; Mutlugun, Evren; Demir, Hilmi Volkan; 01. Abdullah Gül University; 02.01. Mühendislik Bilimleri; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiColloidal quantum wells (CQWs) are excellent candidates for lighting and display applications owing to their narrow emission linewidths (<30 nm). However, realizing their efficient and stable light-emitting solids remains a challenge. To address this problem, stable, efficient solids of CQWs incorporated into crystal matrices are shown. Green-emitting CdSe/CdS core/crown and red-emitting CdSe/CdS core/shell CQWs wrapped into these crystal solids are employed as proof-of-concept demonstrations of light-emitting diode (LED) integration targeting a wide color span in display backlighting. The quantum yield of the green- and red-emitting CQW-containing solids of sucrose reach approximate to 20% and approximate to 55%, respectively, while emission linewidths and peak wavelengths remain almost unaltered. Furthermore, sucrose matrix preserves approximate to 70% and approximate to 45% of the initial emission intensity of the green- and red-emitting CQWs after >60 h, respectively, which is approximate to 4x and approximate to 2x better than the drop-casted CQW films and reference (KCl) host. Color-converting LEDs of these green- and red-emitting CQWs in sucrose possess luminous efficiencies 122 and 189 lm W-elect(-1), respectively. With the liquid crystal display filters, this becomes 39 and 86 lm W-elect(-1), respectively, providing with a color gamut 25% broader than the National Television Standards Committee standard. These results prove that CQW solids enable efficient and stable color converters for display and lighting applications.Article Citation - WoS: 14Citation - Scopus: 13Effects of Silver Nanowires and Their Surface Modification on Electromagnetic Interference, Transport and Mechanical Properties of an Aerospace Grade Epoxy(Sage Publications Ltd, 2024) Ozkutlu Demirel, Merve; Ozturkmen, Mahide B.; Savas, Muzeyyen; Mutlugun, Evren; Erdem, Talha; Oz, Yahya; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiThe aerospace industry has progressively grown its use of composites. Electrically conductive nanocomposites are among important modern materials for this sector. We report on a bulk composite containing silver nanowires (AgNW) and an aerospace grade epoxy for use in carbon fiber reinforced polymers (CFRPs). AgNWs' surfaces were also modified to enhance their ability to be dispersed in epoxy. Composites were obtained by use of three-roll milling which is of major interest for industrial applications, especially for the aerospace sector, since the process is scalable and works for aerospace grade resins with high curing temperatures. Our main objective is to improve the electromagnetic interference (EMI) shielding performance of CFRPs via improving the properties of the resin material. The addition of AgNWs did not considerably alter the flexural strength of the epoxy, however the composite with surface-modified AgNWs has a 46 % higher flexural strength. Adding AgNWs over a low threshold concentration of 0.05 wt% significantly enhanced the electrical conductivity. Conductivities above the percolation threshold lie around 102 S/m. At a concentration of 5 wt% AgNW, the EMI shielding efficiency (SE) of epoxy increased from 3.49 to 12.31 dB. Moreover, the thermal stability of the epoxy was unaffected by AgNWs. As a result, it was discovered that (surface modified) AgNWs improved the (multifunctional) capabilities of the aerospace grade epoxy resin which might be used in CFRPs to further enhance properties of composites parts, demonstrating suitability of AgNWs' as a reinforcement material in aerospace applications.Master Thesis Işık Emici Optoelektronik Cihazların Üretimi ve Yeni Uygulamaları(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Savaş, Müzeyyen; Erdem, Talha; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiFabrication of optoelectronic devices relies on expensive, energy-consuming conventional tools including chemical vapor deposition, lithography, and metal evaporation. Developing an alternative technology would contribute to the efforts on achieving a sustainable optoelectronics technology. Keeping this in our focus, here we present a simple technique to fabricate visible photodetectors. These fully solution-processed and transparent metal-semiconductor-metal photodetectors employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin-oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NW on a glass substrate followed by the coating of ZnO nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 Ω/□. The transmittance of the Ag NW-ZnO films was 84% at 450 nm while the transmittance of the ITO films was 90% at the same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap which is ~30 µm forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell colloidal quantum dots (CQDs) onto this gap. These visible CQD-based photodetectors exhibited responsivities and detectivities up to 8.5 mA/W and 0.95x109 Jones, respectively. These proof-of-concept photodetectors show that the environmentally friendly, low-cost, and energy-saving technique presented here can be an alternative to conventional, high-cost, and energy-hungry techniques while fabricating light-harvesting devices.Doctoral Thesis Koloidal Nanomalzemelerin Akıllı Kendinden Dizilimi ile Nanofotonik Mimarilerin Tasarımı ve Uygulaması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Şenel, Zeynep; Erdem, Talha; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiDNA-driven self-assembly techniques offer precise control over the positioning of colloidal nanoparticles through specific Watson–Crick interactions, and its reversibility via controlling the temperature of medium. This thesis explores an alternative strategy to control DNA-functionalized nanoparticles' binding/unbinding process by leveraging laser radiation, inducing localized heating within the nanoparticles to facilitate disassociation. First, we demonstrate the active manipulation of the optical properties of DNA-assembled gold nanoparticle networks via external optical excitation. Specifically, irradiation with a green hand-held laser yields a substantial ∼30% increase in total transmittance, accompanied by a transition from opaque to transparent states observable in optical microscopy images. The reversibility of this process is demonstrated by the restoration of the nanoparticle network post-irradiation cessation, underscoring the efficacy of optical excitation in tailoring both the structure and optical characteristics of DNA-mediated nanoparticle assemblies. Second, we introduce a method to tailor DNA-driven self-assembly of semiconductor nanoparticles on glass by applying an external optical field. A green laser directs the assembly of DNA-functionalized red-emitting quantum dots (QDs) on DNA-functionalized glass, leaving uncoated spots owing to localized heating. This effect becomes prominent after three hours of radiation using a laser with an irradiance of 57.1 W/cm2. Experiments with different lasers and nanoparticle types confirm the role of laser-induced heating in preventing QD-glass bonding via DNA-DNA interaction. Secondary coating of previously uncoated spots with DNA-functionalized green-emitting QDs and dye-functionalized DNAs indicates a successful hierarchical self-assembly. Our findings highlight the potential of light-assisted DNA-driven self-assembly for diverse nanoparticle architectures, promising applications in optoelectronics and nanophotonics. Keywords: Programmable self-assembly, DNA-driven self-assembly, localized heating, colloidal nanoparticles, DNA conjugation.Doctoral Thesis Kuantum Nokta Işık Saçan Diyotlar için Kuantum Nokta Mimarisi ve Ara Katmanların Mühendisliği(2024) Yazıcı, Ahmet Faruk; Mutlugün, Evren; Erdem, Talha; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiBu tez kapsamında kuantum nokta mimarilerinin optimizasyonu ve ara katmanların kullanımıyla kuantum nokta ışık yayan diyotların(QLED) cihaz performansını artırmak için yeni stratejileri ortaya konmuştur. Bu kapsamda iki temel strateji kullanılmıştır: İlk çalışma, evrik QLED'lerde kuantum nokta (QD) kabuk kalınlığının ve polietilenimin (PEI) ara katmanlarının etkisini incelemektedir. İkinci çalışma, oktantiyol kaplı çekirdek-kabuk-kabuk kuantum noktalarının geliştirilmesini ve uygulanmasını açıklamaktadır. İlk bölümde, ağırlıkça %0,025 konsantrasyondaki PEI ara katmanlarına sahip kalın kabuklu kuantum noktaların kullanıldığı (10,3 nm) QLED'lerde %17'lik maksimum dış kuantum verimine (EQE) ve 91.174 cd/m²'lik bir tepe parlaklığına ulaşılmıştır. Zaman çözünürlüklü fotolüminesans (TRPL) ölçümlerinin sonuçları, PEI'nin kuantum noktaların pasivasyonundaki ve eksitonların sönümlenmesinin bastırılmasındaki rolünü açıklamaktadır. İkinci çalışma, çekirdek/kabuk/kabuk kuantum noktaların optik özelliğini iyileştirmek için hem kükürt kaynağı hem de ligand olarak görev yapan oktantiyol ile yeni bir sentez yöntemini içermektedir. %88,7'lik bir PLQY ve 20,8 nm'lik bir ışıma genişliği elde edilmiştir. Bu kuantum noktalar QLED uygulamalarında %4,1 maksimum EQE ve 85.000 cd/m²'lik maksimum parlaklık performansına sahiptir. Bu sonuçlar, QLED cihaz performansında kuantum nokta yüzey mühendisliğinin, katmanlar arası optimizasyonun ve yük taşıma katmanlarının dikkatli seçiminin önemini kritik bir şekilde vurgulamaktadır. Bu çalışmalar ile verimli, parlak ve renk açısından saf kuantum nokta ekranlarının geliştirilmesine yönelik önemli adımlar atılmıştır.Article Citation - WoS: 1Citation - Scopus: 1Light-Controlled Electrostatic Self-Assembly of Quantum Dots(Amer Chemical Soc, 2025) Akrema; Phul, Ruby; Yazici, Ahmet Faruk; Senel, Zeynep; Erdem, Talha; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiElectrostatic self-assembly is one of the important self-assembly mechanisms that found use in optoelectronics. Although this method enables realizing unconventional architectures, producing complicated architectures in large areas requires local control over the self-assembly process. One of the ways to achieve this control is to provide enough kinetic energy to the self-assembling nanoparticles so that they can escape electrostatic attraction. We hypothesize that this energy can be delivered to the nanoparticles by treating them with light that can be absorbed by the particles. Here, we test this idea to tailor the electrostatic self-assembly of semiconductor quantum dots (QDs) using a laser. Employing fluorescence and atomic force microscopy, we demonstrate that the QDs are not attached to the substrate in regions where they are exposed to light while they are coated in the absence of optical excitation. We further conduct theoretical analysis to show that elevated temperatures indeed allow the QDs to escape the electrostatic attraction of the charged polymers on the surface. We also demonstrate that increasing the temperature during the coating process without irradiating the sample gives similar results as the case when the sample was irradiated. Finally, we fabricate an uncoated region on the self-assembled QD film with dimensions of similar to 200 mu m x 0.5 cm to demonstrate the feasibility of our approach to control the bottom-up self-assembly. We believe that our results may pave the way for a cost-effective and sustainable approach for the fabrication of nanoelectronic and optoelectronic devices.Article Citation - WoS: 2Citation - Scopus: 3Magnetically Controlled Anisotropic Light Emission of DNA-Functionalized Supraparticles(Springer Heidelberg, 2022) Erdem, Talha; Zupkauskas, Mykolas; O'Neill, Thomas; Cassiagli, Alessio; Xu, Peicheng; Altintas, Yemliha; Eiser, Erika; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiIn this article, we show the DNA-functionalization of supraparticles, form their network, and manipulate the optical features of these networks by applying a magnetic field. We start with preparing the supraparticles (SPs) of semiconducting InP/ZnSeS/ZnS quantum dots (QDs), plasmonic silver nanoparticles, and superparamagnetic iron oxide nanoparticles. These SPs are prepared by employing azide-functionalized amphiphilic diblock or triblock copolymers as well as by using their combinations. Subsequently, we attached single-stranded DNAs to these SPs by employing copper-free click chemistry. Next, we hybridized DNA-coated QD SPs with the iron oxide SPs and formed a network. By applying a magnetic field, we restructured this network such that the iron oxide SPs are aligned. This led to an anisotropic emission from the QD SPs with a polarization ratio of 1.9. This study presents a proof-of-concept scheme to control the optical features of a self-assembled supraparticle system using an external interaction. We believe that our work will further contribute to the utilization of smart self-assembly techniques in optics and photonics.Article Citation - WoS: 50Citation - Scopus: 50Multiplexed Patterning of Cesium Lead Halide Perovskite Nanocrystals by Additive Jet Printing for Efficient White Light Generation(Elsevier Science SA, 2020) Altintas, Yemliha; Torun, Ilker; Yazici, Ahmet Faruk; Beskazak, Emre; Erdem, Talha; Onses, M. Serdar; Mutlugun, Evren; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiInorganic perovskite nanocrystals (PNCs) offer the ability to precisely but also flexibly control the peak emission wavelength while also possessing narrow-band emission spectra and high quantum yields. Owing to these features, PNCs have been already employed as color converters on LEDs. Nevertheless, the anion exchange reactions that prevent the blending of perovskites of different colors remain as an important bottleneck. As a remedy to this issue, here we employ additive jet printing to form separated stripes of these nanocrystals. Within this framework, we first present the synthesis of CsPbBr3 and CsPbBrxI3-x nanocrystals spanning the whole visible regime and optimize the cleaning procedure to obtain PNCs possessing photoluminescence quantum yields as high as 91% and emission linewidths as narrow as 15 nm, making them suitable for high quality white light generation. Next, we employ electrohydrodynamic jet printing to form closely spaced stripes of PNCs of various colors and integrated these films with a blue LED to create a white LED. Our proof-of-concept LED achieves high photometric performance as it possesses a color rendering index of 91.3, luminous efficacy of optical radiation > 300 lm/W-opt, and correlated color temperature of ca. 7000 K. We believe that additive jet printing technique will pave the way for a ubiquitous use of these PNCs in light-emitting devices in the near future.Article Citation - WoS: 8Citation - Scopus: 10Numerical Analysis and Experimental Verification of Optical Scattering From Microplastics(Royal Soc, 2023) Genc, Sinan; Icoz, Kutay; Erdem, Talha; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiAccurate and fast characterization of the micron-sized plastic particles in aqueous media requires an in-depth understanding of light interaction with these particles. Due to the complexity of Mie scattering theory, the features of the scattered light have rarely been related to the physical properties of these tiny objects. To address this problem, we reveal the relation of the wavelength-dependent optical scattering patterns with the size and refractive index of the particles by numerically studying the angular scattering features. We subsequently present a low-cost setup to measure the optical scattering of the particles. Theoretical investigation shows that the angular distribution of the scattered light by microplastics carries distinct signatures of the particle size and the refractive index. The results can be used to develop a portable, low-cost setup to detect microplastics in water.Article Citation - WoS: 45Citation - Scopus: 52Optical Detection of Microplastics in Water(Springer Heidelberg, 2021) Iri, Ahmet H.; Shahrah, Malek H. A.; Ali, Ali M.; Qadri, Sayed A.; Erdem, Talha; Ozdur, Ibrahim T.; Icoz, Kutay; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiUnfortunately, the plastic pollution increases at an exponential rate and drastically endangers the marine ecosystem. According to World Health Organization (WHO), microplastics in drinking water have become a concern and may be a risk to human health. One of the major efforts to fight against this problem is developing easy-to-use, low-cost, portable microplastic detection systems. To address this issue, here, we present our prototype device based on an optical system that can help detect the microplastics in water. This system that costs less than $370 is essentially a low-cost Raman spectrometer. It includes a collimated laser (5 mW), a sample holder, a notch filter, a diffraction grating, and a CCD sensor all integrated in a 3D printed case. Our experiments show that our system is capable of detecting microplastics in water having a concentration less than 0.015% w/v. We believe that the designed portable device can find a widespread use all over the world to monitor the microplastic content in an easier and cost-effective manner.Doctoral Thesis Optik Saçılma Temelli Rastgele Orman Destekli Parçacık Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi / Fen Bilimleri Enstitüsü, 2023) Genç, Sinan; Genç, Sinan; İçöz, Kutay; Erdem, Talha; 0000-0002-6909-723X; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiMicroplastics, tiny plastic particles with sizes smaller than 5 mm., are often found in oceans, rivers, lakes, and atmosphere due to plastic pollution. Microplastics releasing toxic chemicals threaten the environment and harm the aquatic life and humans. Especially, the accumulation of microplastics can have detrimental effects on the food chain as a result of larger organisms consuming smaller organisms. Detecting the microplastics is crucial but also challenging. Over the years, researchers have developed different detection methods. One of the standard methods is using spectroscopy tools such as Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. These techniques can identify the chemical composition of microplastics, which can help determine their sources and potential impacts. Another method is the use of microscopy, which allows for the visualization and counting of microplastics in samples. However, these techniques require costly infrastructure, and these instruments being large in size significantly limits the mobility. As a remedy to the cost and mobility problems, in this thesis, we propose and demonstrate a low-cost, portable system to detect size, concentration, and refractive index of microplastics. Our system comprises of low-cost and low-weight components which are utilized for recording the scattering patterns of microplastics in aqueous media. We demonstrate successful predictions of the size and refractive index of microparticles at a given wavelength using a Random Forest Algorithm which relates the measured scattering pattern with the Mie theory. We further employ the refractive index information at various wavelengths for determining the material type of microplastics. We believe that our proposed system enabling an easy, fast, low-cost, and on-site detection of microplastics will be a beneficial tool for the fight against microplastics in the environment.Article Citation - WoS: 1Citation - Scopus: 1Osmotic-Pressure Nematic Ordering in Suspensions of Laponite and Carboxy Methyl Cellulose(Amer Chemical Soc, 2020) Xu, Peicheng; Yazici, Ahmet F.; Erdem, Talha; Lekkerkerker, Henk N. W.; Mutlugun, Evren; Eiser, Erika; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiLaponite is a synthetic clay that is known to form gels in aqueous suspensions at low concentrations (0.01 g/cm(3)) Although it is expected to form lyotropic liquid crystals, such phases usually do not form, as a consequence of laponite's tendency to form gels at concentrations below the threshold for liquid crystal formation. Here we show that macroscopic, birefringent phases of laponite can be prepared through osmotic compression of a laponite solution by an aqueous solution of carboxy methyl cellulose (CMC). We present polarization imaging studies showing how the initially dilute, isotropic laponite phase shrinks while developing typical birefringence colors between crossed polarizers. Using the MichelLevy interference charts, we were able to extract the refractive index and orientation of the laponite nanodisks in the compressed region. Our observations allow us to propose a tentative state diagram, indicating the concentration regions for which we obtain optically anisotropic gels.Conference Object Simple, Sustainable Fabrication of Fully Solution-Processed, Transparent, Metal-Semiconductor Photodetectors Using a Surgical Blade as an Alternative to Conventional Tools(SPIE - The International Society for Optics and Photonics, 2022) Savas, Muzeyyen; Yazici, Ahmet Faruk; Arslan, Aysenur; Mutlugun, Evren; Erdem, Talha; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiFabrication of optoelectronic devices relies on the expensive, energy-consuming conventional tools such as chemical vapor deposition, lithography, and metal evaporation. Furthermore, the films used in these devices are usually deposited at elevated temperatures and under vacuum that impose further restrictions to the device fabrication. Developing an alternative technology would contribute to the efforts on achieving a more sustainable optoelectronics technology. Keeping this focus in our focus, here we present a simple technique to fabricate visible photodetectors. These fully solution-processed and transparent metal-semiconductor-metal photodetectors employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NWs on a glass substrate followed by the coating of ZnO nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 Omega/square as measured by the four-probe method. Optical spectroscopy revealed that the transmittance of the Ag NW-ZnO films was 84% at 450 nm while transmittance of the ITO films was 90% at same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap. The scanning electron microscope images indicate that a gap of similar to 30 mm is opened forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell quantum dots (QDs) on to this gap to form a metal-semiconductor-metal photodetector. These visible QD- based photodetectors exhibited responsivities and detectivities up to 8.5 mA/W and 0.95x10(9) Jones, respectively. These proof-of-concept photodetectors show that the environmentally friendly, low- cost, and energy-saving technique presented here can be an alternative to conventional, more expensive, and energy-hungry techniques while fabricating light-harvesting devices.Article Citation - WoS: 9Citation - Scopus: 10Size, Material Type, and Concentration Estimation for Micro-Particles in Liquid Samples(Elsevier Science SA, 2024) Genc, Sinan; Erdem, Talha; Icoz, Kutay; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiThe on -site examination and characterization of microparticles are becoming crucial due to the significant rise in plastic pollution in natural resources. Hence, identifying the specific microplastic composition and quantity would enable the implementation of preventive measures. This paper presents a cost-effective setup that utilizes the Random Forest algorithm to detect the size and refractive index of micro particles, hence facilitating the identification of the material type. The system utilizes the scattering patterns of laser light from the dispersion of microparticles, namely within the concentration range of 0.05 fM to 3.00 fM. The refractive indices and particle sizes of melamine (Me8) spheres with a size of 8 mu m, as well as polystyrene (PS8) spheres with a size of 8 mu m and (PS10) 10 mu m, were estimated using the Random Forest algorithm and recorded scattering patterns. The proposed method may deliver findings with an average deviation of 0.23 mu m for particle size and 0.015 for particle refractive index. The statistical analysis indicated that there was no notable disparity between the experimental findings and the predictions derived from the machine learning system. The existing configuration can be readily converted into a point -of -use system that can be employed on -site for the purpose of monitoring and identifying microplastic contamination.Article Sustainable Next-Generation Color Converters From P. Harmala Seed Extracts for Solid-State Lighting(Royal Soc Chemistry, 2024) Erdem, Talha; Orenc, Ali; Akcan, Dilber; Duman, Fatih; Soran-Erdem, Zeliha; 01. Abdullah Gül University; 02.01. Mühendislik Bilimleri; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiTraditional solid-state lighting heavily relies on color converters, which often have a significant environmental footprint. As an alternative, natural materials such as plant extracts could be employed if their low quantum yields (QYs) in liquid and solid states were higher. With this motivation, here, we investigate the optical properties of aqueous P. harmala extract, develop efficient color-converting solids through a cost-effective and environmentally friendly method, and integrate them with light-emitting diodes (LEDs). To achieve high-efficiency solid hosts for P. harmala-based fluorophores, we optically and structurally compare two crystalline and two cellulose-based platforms. Structural analyses reveal that sucrose crystals, cellulose-based cotton, and paper platforms enable a relatively homogeneous distribution of fluorophores compared to KCl crystals. Optical characterization demonstrates that the extracted solution and the extract-embedded paper possess QYs of 75.6% and 44.7%, respectively, whereas the QYs of the cotton, sucrose, and KCl crystals remain below 10%. We demonstrated that the paper host with the highest efficiency causes a blueshift in the P. harmala fluorescence, whereas the cotton host induces a redshift. We attribute this to the passivation of nonradiative transitions related to the structure of the hosts. Subsequently, as a proof-of-concept demonstration, we integrate the as-prepared efficient solids of P. harmala for the first time with a light-emitting diode (LED) chip to produce a color-converting LED. The resulting blue-emitting LED achieves a luminous efficiency of 21.9 lm W-elect(-1) with CIE color coordinates of (0.139, 0.070). These findings mark a significant step toward the utilization of plant-based fluorescent biomolecules in solid-state lighting, offering promising environmentally friendly organic color conversion solutions for future lighting applications.Article Citation - WoS: 1Toward Sustainable Optoelectronics: Solution-Processed Quantum Dot Photodetector Fabrication Using a Surgical Blade(SPIE - Society of Photo-Optical Instrumentation Engineers, 2023) Savas, Muzeyyen; Yazici, Ahmet Faruk; Arslan, Aysenur; Mutluguen, Evren; Erdem, Talha; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji MühendisliğiFabrication of optoelectronic devices relies on expensive, energy-consuming conventional tools including chemical vapor deposition, lithography, and metal evaporation. Furthermore, the films used in these devices are usually deposited at elevated temperatures (> 300 degrees C) and under high vacuum, which necessitate further restrictions on the device fabrication. Developing an alternative technology would contribute to the efforts on achieving a sustainable optoelectronics technology. Keeping this in our focus, here we present a simple technique to fabricate visible photodetectors (PDs). These fully solution-processed and transparent metal-semiconductor-metal (MSM) PDs employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin-oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NWs on a glass substrate followed by the coating of zinc oxide nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 omega/? as measured by the four-probe method. Optical spectroscopy revealed that the transmittance of the Ag NW-ZnO films was 84% at 450 nm while the transmittance of the ITO films was 90% at the same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap. The scanning electron microscope images indicate that a gap of similar to 30 mu m is opened forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell quantum dots (QDs) onto this gap to form a MSM PD. These visible QD-based PDs exhibited responsivities and detectivities up to 8.5 mA/W and 0.95 x 109 Jones, respectively at a bias voltage of 5 V and wavelength of 650 nm. These proof-of-concept PDs show that the environmentally friendly, low-cost, and energy-saving technique presented here can be an alternative to conventional, high-cost, and energy-hungry techniques while fabricating photoconductive devices.Article Citation - WoS: 1Citation - Scopus: 1Transparent Colloidal Crystals With Structural Colours(Frontiers Media S.A., 2022) Erdem, Talha; O'Neill, Thomas; Zupkauskas, Mykolas; Caciagli, Alessio; Xu, Peicheng; Lan, Yang; Eiser, Erika; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiSpatially ordered arrangements of spherical colloids are known to exhibit structural colours. The intensity and brilliance of these structural colours typically improve with colloidal monodispersity, low concentrations of point and line defects and with increasing refractive index contrast between the colloids and the embedding medium. Here we show that suspensions of charge stabilised, fluorinated latex particles with low refractive-index contrast to their aqueous background form Wigner crystals with FCC symmetry for volume fractions between 13 and 40%. In reflection they exhibit both strong, almost angle-independent structural colours and sharp, more brilliant Bragg peaks despite the particle polydispersity and bimodal distribution. Simultaneously, these suspensions appear transparent in transmission. Furthermore, binary AB, A(2)B and A(13)B type mixtures of these fluorinated and similarly sized polystyrene particles appeared predominantly white but with clear Bragg peaks indicating a CsCl-like BCC structure and more complex crystals. We characterised the suspensions using a combination of reflectivity measurements and small-angle x-ray scattering, complemented by reflectivity modelling.Article Citation - WoS: 4Citation - Scopus: 4Transparent Films Made of Highly Scattering Particles(Amer Chemical Soc, 2020) Erdem, Talha; Yang, Lan; Xu, Peicheng; Altintas, Yemliha; O'Neil, Thomas; Caciagli, Alessio; Eiser, Erika; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiToday, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration. Here, we address this strong scattering issue in films made of binary colloidal suspensions. In particular, we focus on raspberry-type polymeric particles made of a spherical polystyrene core decorated by small hemispherical domains of acrylate with an overall positive charge, which display an unusual stability against aggregation in aqueous solutions. Their solid films display a brilliant red color due to Bragg scattering but appear completely white on account of strong scattering otherwise. To suppress the scattering and induce transparency, we prepared films by hybridizing them with oppositely charged PS particles with a size similar to that of the bumps on the raspberries. We report that the smaller PS particles prevent raspberry particle aggregation in solid films and suppress scattering by decreasing the spatial variation of the refractive index inside the film. We believe that the results presented here provide a simple strategy to suppress strong scattering of larger particles to be used in optical coatings.
