1. Home
  2. Browse by Author

Browsing by Author "Dincer, Ismail"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing
    (ELSEVIERRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2021) Akin, Mutluhan; Dincer, Ismail; Ok, Ali Ozgun; Orhan, Ahmet; Akin, Muge K.; Topal, Tamer; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Akin, Muge K.
    Rockfall ditches or catchment areas aim to collect falling blocks at the toe of a source zone by dissipating the energy of blocks in an excavated trench. The effectiveness of a rockfall ditch is simply expressed by its block catchment performance and can be evaluated by empirically using existing design charts as well as rockfall simulations. Although 2-dimensional (2-D) analysis has been executed to assess the catchment ditch effectiveness in engineering practice, 3-dimensional (3-D) rockfall models have not received enough attention so far. In this study, the effectiveness of a considerably long rockfall ditch to protect a settlement from falling rocks was assessed on the basis of 3-D rockfall analyses executed using high-resolution digital surface models. The rockfall ditch efficiency was found to be moderate to limited for various segments considering the percentage of blocks not trapped by the ditch. Moreover, the sensitivity of ditch efficiency to ditch depth was analyzed by automated image processing method as well. Additionally, a particular section of ditch alignment was fictitiously excavated or filled by synthetic Digital Surface Model (DSM) generation through image processing. 3-D rockfall modeling carried out using the DSMs with synthetically manipulated ditches points out that the effectiveness of a catchment ditch is highly depended upon ditch depth. Even a small volume of block accumulation inside the ditch definitely reduces the ditch performance resulting extended runout distances reaching to residential area. Finally, 3-D rockfall modeling is accepted to be an effective tool to rate the efficiency of existing rockfall ditches and synthetically generated ditches on DSMs (or DEMs) by means of automated image processing method may assist the control of current ditch dimension as well as new catchment ditch design.
  • Loading...
    Thumbnail Image
    Article
    A new quantitative welding degree classification for ignimbrites
    (SPRINGER, 2023) Akin, Mutluhan; Topal, Tamer; Dincer, Ismail; Akin, Muge K.; Ozvan, Ali; Orhan, Ahmet); Orhan, Ayse; 0000-0001-8873-5287; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Akin, Muge K.
    As a pyroclastic rock type, ignimbrites may reveal varying degrees of welding depending on the temperature (>535 ℃) and overburden pressure conditions during its formation. The welding degree of ignimbrites increases as the formation temperature and the thickness of the overburden deposit in the depositional environment escalate, which are the most crucial factors controlling the rate of welding in ignimbrites. With the increasing temperature, plastic deformation is observed in ignimbrites and the glassy minerals are being welded. Furthermore, the thickness of the overburden causes the deformation of the ash matrix in ignimbrites at the lower sections and the pumice grains are fattened at diferent rates. An increase in the degree of welding of ignimbrites causes an improvement in the physical and mechanical properties of the rock material as well. Within the scope of this research, petrographical, mineralogical, and geochemical studies were carried out on a total of 16 diferent ignimbrite types, which have diferent color and texture properties, obtained from three diferent regions of Turkey (Kayseri, Nevşehir, Ahlat) where ignimbrites extensively crop out, and the physical and mechanical properties of these samples were revealed. Consequently, a new welding classifcation was developed for ignimbrites considering the uniaxial compressive strength and dry unit weight. The proposed welding classifcation consists of six classes ranging from non-welded to highly welded. When the welding degrees of the selected ignimbrites are evaluated, Kayseri ignimbrites mostly exhibit moderate welding characteristics. Nevşehir ignimbrites, on the other hand, have a low welding degree whereas the degree of welding in Ahlat ignimbrites may vary from low to high. Additionally, long and short axis lengths of pumice grains in the ignimbrite specimens were determined by measuring under the microscope, and shape ratios were determined by diferent shape parameter evaluation methods. As a result, it has been concluded that the pumice grains in Kayseri and Ahlat ignimbrites have a more lenticular structure than the pumice grains in Nevşehir ignimbrites. Eventually, the welding degree classes of ignimbrites and the classifcation developed by using threshold values of the oblateness ratio (OR) values of pumice grains at diferent welding degrees are quite compatible. The proposed welding degree classifcation is of great importance in the selection of ignimbrites widely used as dimension stone and in terms of engineering classifcation of this rock type as well as it will guide to the scientifc studies to be performed on ignimbrites with varying physical and mechanical properties.