Browsing by Author "Delikanli, Savas"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Deep-Red-Emitting Colloidal Quantum Well Light-Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure(WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Shabani, Farzan; Dehghanpour Baruj, Hamed; Yurdakul, Iklim; Delikanli, Savas; Gheshlaghi, Negar; Isik, Furkan; Liu, Baiquan; Altintas, Yemliha; Canimkurbey, Betul; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, YemlihaExtending the emission peak wavelength of quasi-2D colloidal quantum wells has been an important quest to fully exploit the potential of these materials, which has not been possible due to the complications arising from the partial dissolution and recrystallization during growth to date. Here, the synthetic pathway of (CdSe/CdS)@(1-4 CdS/CdZnS) (core/crown)@(colloidal atomic layer deposition shell/hot injection shell) hetero-nanoplatelets (NPLs) using multiple techniques, which together enable highly efficient emission beyond 700 nm in the deep-red region, is proposed and demonstrated. Given the challenges of using conventional hot injection procedure, a method that allows to obtain sufficiently thick and passivated NPLs as the seeds is developed. Consequently, through the final hot injection shell coating, thick NPLs with superior optical properties including a high photoluminescence quantum yield of 88% are achieved. These NPLs emitting at 701 nm exhibit a full-width-at-half-maximum of 26 nm, enabled by the successfully maintained quasi-2D shape and minimum defects of the resulting heterostructure. The deep-red light-emitting diode (LED) device fabricated with these NPLs has shown to yield a high external quantum efficiency of 6.8% at 701 nm, which is on par with other types of LEDs in this spectral range.Article Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells(Elsevier, 2022) Yu, Junhong; Sharma, Manoj; Li, Mingjie; Liu, Baiquan; Hernandez-Martinez, Pedro Ludwig; Delikanli, Savas; Sharma, Ashma; Altintas, Yemliha; Hettiarachchi, Chathuranga; Sum, Tze Chien; Demir, Hilmi Volkan; Dang, Cuong; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, YemlihaColloidal quantum wells (CQWs) provide an appealing platform to achieve emissive many-body correlations for novel optoelectronic devices, given that they act as hosts for strong carrier Coulomb interactions and present suppressed Auger recombination. However, the demonstrated high-order excitonic emission in CQWs requires ultrafast pumping with high excitation levels and can only be spec-trally resolved at the single-particle level under cryogenic condi-tions. Here, through systematic investigation using static power -dependent emission spectroscopy and transient carrier dynamics, we show that Cu-doped CdSe CQWs exhibit continuous-wave -pumped high-order excitonic emission at room temperature with a large binding energy of X64 meV. We attribute this unique behavior to dopant excitons in which the ultralong lifetime and the highly localized wavefunction facilitate the formation of many-body corre-lations. The spectrally resolved high-order excitonic emission gener-ated at power levels compatible with solar irradiation and electrical injection might pave the way for novel solution-processed solid-state devices.Article Low-Threshold Lasing from Copper-Doped CdSe Colloidal Quantum Wells(WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Yu, Junhong; Sharma, Manoj; Li, Mingjie; Delikanli, Savas; Sharma, Ashma; Taimoor, Muhammad; Altintas, Yemliha; McBride, James R.; Kusserow, Thomas; Sum, Tze-Chien; Demir, Hilmi Volkan; Dang, Cuong; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, YemlihaTransition metal doped colloidal nanomaterials (TMDCNMs) have recently attracted attention as promising nano-emitters due to dopant-induced properties. However, despite ample investigations on the steady-state and dynamic spectroscopy of TMDCNMs, experimental understandings of their performance in stimulated emission regimes are still elusive. Here, the optical gain properties of copper-doped CdSe colloidal quantum wells (CQWs) are systemically studied with a wide range of dopant concentration for the first time. This work demonstrates that the amplified spontaneous emission (ASE) threshold in copper-doped CQWs is a competing result between the biexciton formation, which is preferred to achieve population inversion, and the hole trapping which stymies the population inversion. An optimum amount of copper dopants enables the lowest ASE threshold of approximate to 7 mu J cm(-2), about 8-fold reduction from that in undoped CQWs (approximate to 58 mu J cm(-2)) under sub-nanosecond pulse excitation. Finally, a copper-doped CQW film embedded in a vertical cavity surface-emitting laser (VCSEL) structure yields an ultralow lasing threshold of 4.1 mu J cm(-2). Exploiting optical gain from TMDCNMs may help to further boost the performance of colloidal-based lasers.Article Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes(Cell Press, 2022) Liu, Baiquan; Sharma, Manoj; Yu, Junhong; Wang, Lin; Shendre, Sushant; Sharma, Ashma; Izmir, Merve; Delikanli, Savas; Altintas, Yemliha; Dang, Cuong; Sun, Handong; Demir, Hilmi Volkan; 0000-0001-9375-7683; 0000-0001-5215-9740; 0000-0001-6183-4082; 0000-0002-2261-7103; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altıntaş, YemlihaImpurity doping is a promising strategy to afford colloidal nanocrystals exhibiting novel optical, catalytic, and electronic characteristics. However, some significant properties of noble metal-doped nanocrystals (NMD-NCs) remain unknown. Here, we report the electroluminescence (EL) from NMD-NCs. By doping silver impurity into cadmium selenide colloidal quantum wells (CQWs), dual-emission emitters are achieved and a light-emitting diode (LED) with a luminance of 1,339 cd m−2 is reported. In addition, the proposed energy gap engineering to manage exciton recombination is a feasible scheme for tunable EL emissions (e.g., the dopant emission is tuned from 606 to 761 nm). Furthermore, an organic-inorganic hybrid white LED based on CQWs is realized, reaching a color rendering index of 82. Moreover, flexible CQW-LEDs are reported. The findings present a step to unveil the EL property of NMD-NCs, which can be extended to other noble metal impurities, and pave the pathway for NMD-NCs as a class of electronic materials for EL applications.Article Single-Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity(WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Foroutan-Barenji, Sina; Erdem, Onur; Delikanli, Savas; Yagci, Huseyin Bilge; Gheshlaghi, Negar; Altintas, Yemliha; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, YemlihaIn this work, the first account of monolithically-fabricated vertical cavity surface emitting lasers (VCSELs) of densely-packed, orientation-controlled, atomically flat colloidal quantum wells (CQWs) using a self-assembly method and demonstrate single-mode lasing from a record thin colloidal gain medium with a film thickness of 7 nm under femtosecond optical excitation is reported. Specially engineered CQWs are used to demonstrate these hybrid CQW-VCSELs consisting of only a few layers to a single monolayer of CQWs and are achieved the lasing from these thin gain media by thoroughly modeling and implementing a vertical cavity consisting of distributed Bragg reflectors with an additional dielectric layer for mode tuning. Accurate spectral and spatial alignment of the cavity mode with the CQW films is secured with the help of full electromagnetic computations. While overcoming the long-pending problem of limited electrical conductivity in thicker colloidal films, such ultrathin colloidal gain media can be helpful to enable fully electrically-driven colloidal lasers.