Browsing by Author "Dedeturk, Bilge Kağan"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Research Project GEAKDES: Gerçek Zamanlı Deprem Afet / Süreç Yönetimi İçin Yapay Zekâ Temelli Akıllı Karar Destek Sistemi(TRDizin, 2024) Özmen, Mihrimah; Akın, Müge; Yüksel, Muhammed Burak; Dedetürk, Bilge Kağan; Özcan, Orkan; 0000-0001-8873-5287; 0000-0002-8026-5003; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Akın, Müge; Dedeturk, Bilge KağanDepremler, dünya genelinde sıkça görülen ve ciddi etkiler yaratan doğal felaketlerdir. Modern teknoloji, özellikle sismik olarak aktif bölgelerde, gerçek zamanlı sismik ölçümlerle hızlı müdahale imkanı sağlar. Deprem sonrası hızlı ve doğru hasar tespiti, acil yardım ve kurtarma operasyonlarının etkin yönetilmesini sağlar. Depremlerin dünya çapında ekonomik ve insan kayıpları büyük boyutlardadır, özellikle sismik olarak aktif bölgelerde tehdit oluşturur. Bina güçlendirme çalışmaları ve afet önleme planları, toplumların depremlere karşı direncini artırabilir. Makine öğrenimi ve yapay zeka, depremle ilgili konularda önemli uygulamalara sahiptir. Bu teknolojiler, deprem hasar tahmini, sismik aktivite tahmini ve bina güçlendirme stratejilerinde kullanılır. GEAKDES projesi, bütünleşik bir afet karar destek sistemi sunmaktadır. Gerçek zamanlı makine öğrenmesi algoritmaları, deprem hasar tahminini bina, deprem, zemin gibi karakteristik özelliklerden elde ederek gerçekleştirmektedir. Bu bilgiler, uydu görüntü analizleri ile birleştirilerek daha yüksek doğrulukla deprem hasar tahmini yapılmasını sağlamaktadır. Ayrıca, deprem sonrası yardım ihtiyaçlarını tespit ederek lojistik ağ modeli çalıştırılmakta ve yardım rotaları belirlenmektedir. Proje kapsamında geliştirilen Maliyet Duyarlı Paralel ABC-ANN ve Maliyet Duyarlı Paralel GA algoritmaları, deprem hasar tahmininde yüksek doğruluk ve hızlı eğitim süreleriyle dikkat çekmektedir. Sentinel-2 ve Sentinel-1 uydu görüntüleri kullanılarak deprem sonrası hasar tespiti yapılmış, optik görüntülerle bina yıkımları, SAR görüntüleriyle zemindeki değişiklikler belirlenmiştir. Bu bilgilerin entegrasyonuyla %91 doğruluk elde edilmiştir. Açık kaynaklı Sentinel-1 SAR uydu görüntülerinin kullanımı, makine öğrenmesi yöntemlerine entegre edilerek deprem kaynaklı hasarın anlaşılmasına katkı sağlamıştır. GEAKDES, hasar tahmin bilgilerini kullanarak deprem bölgesi yardım ulaştırma planlamasına yönelik lojistik ağı modellemektedir. MM-CSA yaklaşımıyla rotalar hesaplanmış ve İkame Ürün Stratejisi ile pilot bölgelerde yardım dağıtım rotaları belirlenmiştir. Proje, elde edilen bilgi ve deneyimleri paylaşarak insanlığın faydalanmasını amaçlamaktadır.